| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d |  |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | 
						
							| 2 | 1 | derangenlem |  |-  ( ( A ~~ B /\ B e. Fin ) -> ( D ` A ) <_ ( D ` B ) ) | 
						
							| 3 |  | ensym |  |-  ( A ~~ B -> B ~~ A ) | 
						
							| 4 | 3 | adantr |  |-  ( ( A ~~ B /\ B e. Fin ) -> B ~~ A ) | 
						
							| 5 |  | enfi |  |-  ( A ~~ B -> ( A e. Fin <-> B e. Fin ) ) | 
						
							| 6 | 5 | biimpar |  |-  ( ( A ~~ B /\ B e. Fin ) -> A e. Fin ) | 
						
							| 7 | 1 | derangenlem |  |-  ( ( B ~~ A /\ A e. Fin ) -> ( D ` B ) <_ ( D ` A ) ) | 
						
							| 8 | 4 6 7 | syl2anc |  |-  ( ( A ~~ B /\ B e. Fin ) -> ( D ` B ) <_ ( D ` A ) ) | 
						
							| 9 | 1 | derangf |  |-  D : Fin --> NN0 | 
						
							| 10 | 9 | ffvelcdmi |  |-  ( A e. Fin -> ( D ` A ) e. NN0 ) | 
						
							| 11 | 6 10 | syl |  |-  ( ( A ~~ B /\ B e. Fin ) -> ( D ` A ) e. NN0 ) | 
						
							| 12 | 9 | ffvelcdmi |  |-  ( B e. Fin -> ( D ` B ) e. NN0 ) | 
						
							| 13 | 12 | adantl |  |-  ( ( A ~~ B /\ B e. Fin ) -> ( D ` B ) e. NN0 ) | 
						
							| 14 |  | nn0re |  |-  ( ( D ` A ) e. NN0 -> ( D ` A ) e. RR ) | 
						
							| 15 |  | nn0re |  |-  ( ( D ` B ) e. NN0 -> ( D ` B ) e. RR ) | 
						
							| 16 |  | letri3 |  |-  ( ( ( D ` A ) e. RR /\ ( D ` B ) e. RR ) -> ( ( D ` A ) = ( D ` B ) <-> ( ( D ` A ) <_ ( D ` B ) /\ ( D ` B ) <_ ( D ` A ) ) ) ) | 
						
							| 17 | 14 15 16 | syl2an |  |-  ( ( ( D ` A ) e. NN0 /\ ( D ` B ) e. NN0 ) -> ( ( D ` A ) = ( D ` B ) <-> ( ( D ` A ) <_ ( D ` B ) /\ ( D ` B ) <_ ( D ` A ) ) ) ) | 
						
							| 18 | 11 13 17 | syl2anc |  |-  ( ( A ~~ B /\ B e. Fin ) -> ( ( D ` A ) = ( D ` B ) <-> ( ( D ` A ) <_ ( D ` B ) /\ ( D ` B ) <_ ( D ` A ) ) ) ) | 
						
							| 19 | 2 8 18 | mpbir2and |  |-  ( ( A ~~ B /\ B e. Fin ) -> ( D ` A ) = ( D ` B ) ) |