| Step |
Hyp |
Ref |
Expression |
| 1 |
|
derang.d |
|- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) |
| 2 |
1
|
derangenlem |
|- ( ( A ~~ B /\ B e. Fin ) -> ( D ` A ) <_ ( D ` B ) ) |
| 3 |
|
ensym |
|- ( A ~~ B -> B ~~ A ) |
| 4 |
3
|
adantr |
|- ( ( A ~~ B /\ B e. Fin ) -> B ~~ A ) |
| 5 |
|
enfi |
|- ( A ~~ B -> ( A e. Fin <-> B e. Fin ) ) |
| 6 |
5
|
biimpar |
|- ( ( A ~~ B /\ B e. Fin ) -> A e. Fin ) |
| 7 |
1
|
derangenlem |
|- ( ( B ~~ A /\ A e. Fin ) -> ( D ` B ) <_ ( D ` A ) ) |
| 8 |
4 6 7
|
syl2anc |
|- ( ( A ~~ B /\ B e. Fin ) -> ( D ` B ) <_ ( D ` A ) ) |
| 9 |
1
|
derangf |
|- D : Fin --> NN0 |
| 10 |
9
|
ffvelcdmi |
|- ( A e. Fin -> ( D ` A ) e. NN0 ) |
| 11 |
6 10
|
syl |
|- ( ( A ~~ B /\ B e. Fin ) -> ( D ` A ) e. NN0 ) |
| 12 |
9
|
ffvelcdmi |
|- ( B e. Fin -> ( D ` B ) e. NN0 ) |
| 13 |
12
|
adantl |
|- ( ( A ~~ B /\ B e. Fin ) -> ( D ` B ) e. NN0 ) |
| 14 |
|
nn0re |
|- ( ( D ` A ) e. NN0 -> ( D ` A ) e. RR ) |
| 15 |
|
nn0re |
|- ( ( D ` B ) e. NN0 -> ( D ` B ) e. RR ) |
| 16 |
|
letri3 |
|- ( ( ( D ` A ) e. RR /\ ( D ` B ) e. RR ) -> ( ( D ` A ) = ( D ` B ) <-> ( ( D ` A ) <_ ( D ` B ) /\ ( D ` B ) <_ ( D ` A ) ) ) ) |
| 17 |
14 15 16
|
syl2an |
|- ( ( ( D ` A ) e. NN0 /\ ( D ` B ) e. NN0 ) -> ( ( D ` A ) = ( D ` B ) <-> ( ( D ` A ) <_ ( D ` B ) /\ ( D ` B ) <_ ( D ` A ) ) ) ) |
| 18 |
11 13 17
|
syl2anc |
|- ( ( A ~~ B /\ B e. Fin ) -> ( ( D ` A ) = ( D ` B ) <-> ( ( D ` A ) <_ ( D ` B ) /\ ( D ` B ) <_ ( D ` A ) ) ) ) |
| 19 |
2 8 18
|
mpbir2and |
|- ( ( A ~~ B /\ B e. Fin ) -> ( D ` A ) = ( D ` B ) ) |