| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d | ⊢ 𝐷  =  ( 𝑥  ∈  Fin  ↦  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 2 | 1 | derangenlem | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  ( 𝐷 ‘ 𝐴 )  ≤  ( 𝐷 ‘ 𝐵 ) ) | 
						
							| 3 |  | ensym | ⊢ ( 𝐴  ≈  𝐵  →  𝐵  ≈  𝐴 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  𝐵  ≈  𝐴 ) | 
						
							| 5 |  | enfi | ⊢ ( 𝐴  ≈  𝐵  →  ( 𝐴  ∈  Fin  ↔  𝐵  ∈  Fin ) ) | 
						
							| 6 | 5 | biimpar | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  𝐴  ∈  Fin ) | 
						
							| 7 | 1 | derangenlem | ⊢ ( ( 𝐵  ≈  𝐴  ∧  𝐴  ∈  Fin )  →  ( 𝐷 ‘ 𝐵 )  ≤  ( 𝐷 ‘ 𝐴 ) ) | 
						
							| 8 | 4 6 7 | syl2anc | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  ( 𝐷 ‘ 𝐵 )  ≤  ( 𝐷 ‘ 𝐴 ) ) | 
						
							| 9 | 1 | derangf | ⊢ 𝐷 : Fin ⟶ ℕ0 | 
						
							| 10 | 9 | ffvelcdmi | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐷 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 11 | 6 10 | syl | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  ( 𝐷 ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 12 | 9 | ffvelcdmi | ⊢ ( 𝐵  ∈  Fin  →  ( 𝐷 ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  ( 𝐷 ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 14 |  | nn0re | ⊢ ( ( 𝐷 ‘ 𝐴 )  ∈  ℕ0  →  ( 𝐷 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 15 |  | nn0re | ⊢ ( ( 𝐷 ‘ 𝐵 )  ∈  ℕ0  →  ( 𝐷 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 16 |  | letri3 | ⊢ ( ( ( 𝐷 ‘ 𝐴 )  ∈  ℝ  ∧  ( 𝐷 ‘ 𝐵 )  ∈  ℝ )  →  ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝐵 )  ↔  ( ( 𝐷 ‘ 𝐴 )  ≤  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝐵 )  ≤  ( 𝐷 ‘ 𝐴 ) ) ) ) | 
						
							| 17 | 14 15 16 | syl2an | ⊢ ( ( ( 𝐷 ‘ 𝐴 )  ∈  ℕ0  ∧  ( 𝐷 ‘ 𝐵 )  ∈  ℕ0 )  →  ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝐵 )  ↔  ( ( 𝐷 ‘ 𝐴 )  ≤  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝐵 )  ≤  ( 𝐷 ‘ 𝐴 ) ) ) ) | 
						
							| 18 | 11 13 17 | syl2anc | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  ( ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝐵 )  ↔  ( ( 𝐷 ‘ 𝐴 )  ≤  ( 𝐷 ‘ 𝐵 )  ∧  ( 𝐷 ‘ 𝐵 )  ≤  ( 𝐷 ‘ 𝐴 ) ) ) ) | 
						
							| 19 | 2 8 18 | mpbir2and | ⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  Fin )  →  ( 𝐷 ‘ 𝐴 )  =  ( 𝐷 ‘ 𝐵 ) ) |