Step |
Hyp |
Ref |
Expression |
0 |
|
cfinsum |
|- FinSum |
1 |
|
vx |
|- x |
2 |
|
vy |
|- y |
3 |
|
vz |
|- z |
4 |
2
|
cv |
|- y |
5 |
|
ccmn |
|- CMnd |
6 |
4 5
|
wcel |
|- y e. CMnd |
7 |
|
vt |
|- t |
8 |
|
cfn |
|- Fin |
9 |
3
|
cv |
|- z |
10 |
7
|
cv |
|- t |
11 |
|
cbs |
|- Base |
12 |
4 11
|
cfv |
|- ( Base ` y ) |
13 |
10 12 9
|
wf |
|- z : t --> ( Base ` y ) |
14 |
13 7 8
|
wrex |
|- E. t e. Fin z : t --> ( Base ` y ) |
15 |
6 14
|
wa |
|- ( y e. CMnd /\ E. t e. Fin z : t --> ( Base ` y ) ) |
16 |
15 2 3
|
copab |
|- { <. y , z >. | ( y e. CMnd /\ E. t e. Fin z : t --> ( Base ` y ) ) } |
17 |
|
vs |
|- s |
18 |
|
vm |
|- m |
19 |
|
cn0 |
|- NN0 |
20 |
|
vf |
|- f |
21 |
20
|
cv |
|- f |
22 |
|
c1 |
|- 1 |
23 |
|
cfz |
|- ... |
24 |
18
|
cv |
|- m |
25 |
22 24 23
|
co |
|- ( 1 ... m ) |
26 |
|
c2nd |
|- 2nd |
27 |
1
|
cv |
|- x |
28 |
27 26
|
cfv |
|- ( 2nd ` x ) |
29 |
28
|
cdm |
|- dom ( 2nd ` x ) |
30 |
25 29 21
|
wf1o |
|- f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) |
31 |
17
|
cv |
|- s |
32 |
|
cplusg |
|- +g |
33 |
|
c1st |
|- 1st |
34 |
27 33
|
cfv |
|- ( 1st ` x ) |
35 |
34 32
|
cfv |
|- ( +g ` ( 1st ` x ) ) |
36 |
|
vn |
|- n |
37 |
|
cn |
|- NN |
38 |
36
|
cv |
|- n |
39 |
38 21
|
cfv |
|- ( f ` n ) |
40 |
39 28
|
cfv |
|- ( ( 2nd ` x ) ` ( f ` n ) ) |
41 |
36 37 40
|
cmpt |
|- ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) |
42 |
35 41 22
|
cseq |
|- seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) |
43 |
24 42
|
cfv |
|- ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) |
44 |
31 43
|
wceq |
|- s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) |
45 |
30 44
|
wa |
|- ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) |
46 |
45 20
|
wex |
|- E. f ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) |
47 |
46 18 19
|
wrex |
|- E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) |
48 |
47 17
|
cio |
|- ( iota s E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) ) |
49 |
1 16 48
|
cmpt |
|- ( x e. { <. y , z >. | ( y e. CMnd /\ E. t e. Fin z : t --> ( Base ` y ) ) } |-> ( iota s E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) ) ) |
50 |
0 49
|
wceq |
|- FinSum = ( x e. { <. y , z >. | ( y e. CMnd /\ E. t e. Fin z : t --> ( Base ` y ) ) } |-> ( iota s E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) ) ) |