| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-finsumval0.1 |
|- ( ph -> A e. CMnd ) |
| 2 |
|
bj-finsumval0.2 |
|- ( ph -> I e. Fin ) |
| 3 |
|
bj-finsumval0.3 |
|- ( ph -> B : I --> ( Base ` A ) ) |
| 4 |
|
df-ov |
|- ( A FinSum B ) = ( FinSum ` <. A , B >. ) |
| 5 |
|
df-bj-finsum |
|- FinSum = ( x e. { <. y , z >. | ( y e. CMnd /\ E. t e. Fin z : t --> ( Base ` y ) ) } |-> ( iota s E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) ) ) |
| 6 |
|
simpr |
|- ( ( ph /\ x = <. A , B >. ) -> x = <. A , B >. ) |
| 7 |
6
|
fveq2d |
|- ( ( ph /\ x = <. A , B >. ) -> ( 1st ` x ) = ( 1st ` <. A , B >. ) ) |
| 8 |
1
|
adantr |
|- ( ( ph /\ x = <. A , B >. ) -> A e. CMnd ) |
| 9 |
3 2
|
fexd |
|- ( ph -> B e. _V ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ x = <. A , B >. ) -> B e. _V ) |
| 11 |
|
op1stg |
|- ( ( A e. CMnd /\ B e. _V ) -> ( 1st ` <. A , B >. ) = A ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( ph /\ x = <. A , B >. ) -> ( 1st ` <. A , B >. ) = A ) |
| 13 |
7 12
|
eqtrd |
|- ( ( ph /\ x = <. A , B >. ) -> ( 1st ` x ) = A ) |
| 14 |
6
|
fveq2d |
|- ( ( ph /\ x = <. A , B >. ) -> ( 2nd ` x ) = ( 2nd ` <. A , B >. ) ) |
| 15 |
|
op2ndg |
|- ( ( A e. CMnd /\ B e. _V ) -> ( 2nd ` <. A , B >. ) = B ) |
| 16 |
8 10 15
|
syl2anc |
|- ( ( ph /\ x = <. A , B >. ) -> ( 2nd ` <. A , B >. ) = B ) |
| 17 |
14 16
|
eqtrd |
|- ( ( ph /\ x = <. A , B >. ) -> ( 2nd ` x ) = B ) |
| 18 |
17
|
dmeqd |
|- ( ( ph /\ x = <. A , B >. ) -> dom ( 2nd ` x ) = dom B ) |
| 19 |
3
|
fdmd |
|- ( ph -> dom B = I ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ x = <. A , B >. ) -> dom B = I ) |
| 21 |
18 20
|
eqtrd |
|- ( ( ph /\ x = <. A , B >. ) -> dom ( 2nd ` x ) = I ) |
| 22 |
|
f1oeq3 |
|- ( dom ( 2nd ` x ) = I -> ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) <-> f : ( 1 ... m ) -1-1-onto-> I ) ) |
| 23 |
22
|
biimpd |
|- ( dom ( 2nd ` x ) = I -> ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) -> f : ( 1 ... m ) -1-1-onto-> I ) ) |
| 24 |
23
|
ad2antll |
|- ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) -> ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) -> f : ( 1 ... m ) -1-1-onto-> I ) ) |
| 25 |
24
|
adantrd |
|- ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) -> ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) -> f : ( 1 ... m ) -1-1-onto-> I ) ) |
| 26 |
25
|
adantr |
|- ( ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) -> ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) -> f : ( 1 ... m ) -1-1-onto-> I ) ) |
| 27 |
|
eqidd |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> 1 = 1 ) |
| 28 |
|
simprl |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) ) -> ( 1st ` x ) = A ) |
| 29 |
28
|
fveq2d |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) ) -> ( +g ` ( 1st ` x ) ) = ( +g ` A ) ) |
| 30 |
29
|
adantrr |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> ( +g ` ( 1st ` x ) ) = ( +g ` A ) ) |
| 31 |
|
simprrl |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) ) -> ( 2nd ` x ) = B ) |
| 32 |
31
|
adantr |
|- ( ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) ) /\ n e. NN ) -> ( 2nd ` x ) = B ) |
| 33 |
32
|
fveq1d |
|- ( ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) ) /\ n e. NN ) -> ( ( 2nd ` x ) ` ( f ` n ) ) = ( B ` ( f ` n ) ) ) |
| 34 |
33
|
mpteq2dva |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) ) -> ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) = ( n e. NN |-> ( B ` ( f ` n ) ) ) ) |
| 35 |
34
|
adantrr |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) = ( n e. NN |-> ( B ` ( f ` n ) ) ) ) |
| 36 |
27 30 35
|
seqeq123d |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) = seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ) |
| 37 |
|
simprr |
|- ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) -> dom ( 2nd ` x ) = I ) |
| 38 |
37
|
anim1ci |
|- ( ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) -> ( m e. NN0 /\ dom ( 2nd ` x ) = I ) ) |
| 39 |
|
hashfz1 |
|- ( m e. NN0 -> ( # ` ( 1 ... m ) ) = m ) |
| 40 |
39
|
eqcomd |
|- ( m e. NN0 -> m = ( # ` ( 1 ... m ) ) ) |
| 41 |
40
|
ad2antrl |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( m e. NN0 /\ dom ( 2nd ` x ) = I ) ) -> m = ( # ` ( 1 ... m ) ) ) |
| 42 |
|
fzfid |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( m e. NN0 /\ dom ( 2nd ` x ) = I ) ) -> ( 1 ... m ) e. Fin ) |
| 43 |
|
19.8a |
|- ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) -> E. f f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) ) |
| 44 |
43
|
adantr |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( m e. NN0 /\ dom ( 2nd ` x ) = I ) ) -> E. f f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) ) |
| 45 |
|
hasheqf1oi |
|- ( ( 1 ... m ) e. Fin -> ( E. f f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) -> ( # ` ( 1 ... m ) ) = ( # ` dom ( 2nd ` x ) ) ) ) |
| 46 |
42 44 45
|
sylc |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( m e. NN0 /\ dom ( 2nd ` x ) = I ) ) -> ( # ` ( 1 ... m ) ) = ( # ` dom ( 2nd ` x ) ) ) |
| 47 |
|
simprr |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( m e. NN0 /\ dom ( 2nd ` x ) = I ) ) -> dom ( 2nd ` x ) = I ) |
| 48 |
47
|
fveq2d |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( m e. NN0 /\ dom ( 2nd ` x ) = I ) ) -> ( # ` dom ( 2nd ` x ) ) = ( # ` I ) ) |
| 49 |
41 46 48
|
3eqtrd |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( m e. NN0 /\ dom ( 2nd ` x ) = I ) ) -> m = ( # ` I ) ) |
| 50 |
38 49
|
sylan2 |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> m = ( # ` I ) ) |
| 51 |
36 50
|
fveq12d |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) |
| 52 |
51
|
eqeq2d |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> ( s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) <-> s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) |
| 53 |
52
|
biimpd |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> ( s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) -> s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) |
| 54 |
53
|
impancom |
|- ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) -> ( ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) -> s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) |
| 55 |
54
|
com12 |
|- ( ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) -> ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) -> s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) |
| 56 |
26 55
|
jcad |
|- ( ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) -> ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) -> ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) ) |
| 57 |
22
|
biimprd |
|- ( dom ( 2nd ` x ) = I -> ( f : ( 1 ... m ) -1-1-onto-> I -> f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) ) ) |
| 58 |
57
|
ad2antll |
|- ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) -> ( f : ( 1 ... m ) -1-1-onto-> I -> f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) ) ) |
| 59 |
58
|
adantr |
|- ( ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) -> ( f : ( 1 ... m ) -1-1-onto-> I -> f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) ) ) |
| 60 |
59
|
adantrd |
|- ( ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) -> ( ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) -> f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) ) ) |
| 61 |
|
eqidd |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> 1 = 1 ) |
| 62 |
|
simpl |
|- ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) -> ( 1st ` x ) = A ) |
| 63 |
|
tru |
|- T. |
| 64 |
62 63
|
jctir |
|- ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) -> ( ( 1st ` x ) = A /\ T. ) ) |
| 65 |
64
|
ad2antrl |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> ( ( 1st ` x ) = A /\ T. ) ) |
| 66 |
|
simpl |
|- ( ( ( 1st ` x ) = A /\ T. ) -> ( 1st ` x ) = A ) |
| 67 |
66
|
eqcomd |
|- ( ( ( 1st ` x ) = A /\ T. ) -> A = ( 1st ` x ) ) |
| 68 |
65 67
|
syl |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> A = ( 1st ` x ) ) |
| 69 |
68
|
fveq2d |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> ( +g ` A ) = ( +g ` ( 1st ` x ) ) ) |
| 70 |
|
simpl |
|- ( ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) -> ( 2nd ` x ) = B ) |
| 71 |
70
|
eqcomd |
|- ( ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) -> B = ( 2nd ` x ) ) |
| 72 |
71
|
ad2antll |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) ) -> B = ( 2nd ` x ) ) |
| 73 |
72
|
adantr |
|- ( ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) ) /\ n e. NN ) -> B = ( 2nd ` x ) ) |
| 74 |
73
|
fveq1d |
|- ( ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) ) /\ n e. NN ) -> ( B ` ( f ` n ) ) = ( ( 2nd ` x ) ` ( f ` n ) ) ) |
| 75 |
74
|
adantlrr |
|- ( ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) /\ n e. NN ) -> ( B ` ( f ` n ) ) = ( ( 2nd ` x ) ` ( f ` n ) ) ) |
| 76 |
75
|
mpteq2dva |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> ( n e. NN |-> ( B ` ( f ` n ) ) ) = ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) |
| 77 |
61 69 76
|
seqeq123d |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) = seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ) |
| 78 |
59
|
impcom |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) ) |
| 79 |
|
simprr |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> m e. NN0 ) |
| 80 |
37
|
ad2antrl |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> dom ( 2nd ` x ) = I ) |
| 81 |
78 79 80 49
|
syl12anc |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> m = ( # ` I ) ) |
| 82 |
81
|
eqcomd |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> ( # ` I ) = m ) |
| 83 |
77 82
|
fveq12d |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) |
| 84 |
83
|
eqeq2d |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> ( s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) <-> s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) ) |
| 85 |
84
|
biimpd |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) ) -> ( s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) -> s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) ) |
| 86 |
85
|
impancom |
|- ( ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) -> ( ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) -> s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) ) |
| 87 |
86
|
com12 |
|- ( ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) -> ( ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) -> s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) ) |
| 88 |
60 87
|
jcad |
|- ( ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) -> ( ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) -> ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) ) ) |
| 89 |
56 88
|
impbid |
|- ( ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) /\ m e. NN0 ) -> ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) ) |
| 90 |
89
|
ex |
|- ( ( ( 1st ` x ) = A /\ ( ( 2nd ` x ) = B /\ dom ( 2nd ` x ) = I ) ) -> ( m e. NN0 -> ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) ) ) |
| 91 |
13 17 21 90
|
syl12anc |
|- ( ( ph /\ x = <. A , B >. ) -> ( m e. NN0 -> ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) ) ) |
| 92 |
91
|
imp |
|- ( ( ( ph /\ x = <. A , B >. ) /\ m e. NN0 ) -> ( ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) ) |
| 93 |
92
|
exbidv |
|- ( ( ( ph /\ x = <. A , B >. ) /\ m e. NN0 ) -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) ) |
| 94 |
93
|
rexbidva |
|- ( ( ph /\ x = <. A , B >. ) -> ( E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) <-> E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) ) |
| 95 |
94
|
iotabidv |
|- ( ( ph /\ x = <. A , B >. ) -> ( iota s E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> dom ( 2nd ` x ) /\ s = ( seq 1 ( ( +g ` ( 1st ` x ) ) , ( n e. NN |-> ( ( 2nd ` x ) ` ( f ` n ) ) ) ) ` m ) ) ) = ( iota s E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) ) |
| 96 |
|
eleq1 |
|- ( t = I -> ( t e. Fin <-> I e. Fin ) ) |
| 97 |
|
feq2 |
|- ( t = I -> ( B : t --> ( Base ` A ) <-> B : I --> ( Base ` A ) ) ) |
| 98 |
96 97
|
anbi12d |
|- ( t = I -> ( ( t e. Fin /\ B : t --> ( Base ` A ) ) <-> ( I e. Fin /\ B : I --> ( Base ` A ) ) ) ) |
| 99 |
98
|
ceqsexgv |
|- ( I e. Fin -> ( E. t ( t = I /\ ( t e. Fin /\ B : t --> ( Base ` A ) ) ) <-> ( I e. Fin /\ B : I --> ( Base ` A ) ) ) ) |
| 100 |
2 99
|
syl |
|- ( ph -> ( E. t ( t = I /\ ( t e. Fin /\ B : t --> ( Base ` A ) ) ) <-> ( I e. Fin /\ B : I --> ( Base ` A ) ) ) ) |
| 101 |
2 3 100
|
mpbir2and |
|- ( ph -> E. t ( t = I /\ ( t e. Fin /\ B : t --> ( Base ` A ) ) ) ) |
| 102 |
|
exsimpr |
|- ( E. t ( t = I /\ ( t e. Fin /\ B : t --> ( Base ` A ) ) ) -> E. t ( t e. Fin /\ B : t --> ( Base ` A ) ) ) |
| 103 |
101 102
|
syl |
|- ( ph -> E. t ( t e. Fin /\ B : t --> ( Base ` A ) ) ) |
| 104 |
|
df-rex |
|- ( E. t e. Fin B : t --> ( Base ` A ) <-> E. t ( t e. Fin /\ B : t --> ( Base ` A ) ) ) |
| 105 |
103 104
|
sylibr |
|- ( ph -> E. t e. Fin B : t --> ( Base ` A ) ) |
| 106 |
|
eleq1 |
|- ( y = A -> ( y e. CMnd <-> A e. CMnd ) ) |
| 107 |
|
fveq2 |
|- ( y = A -> ( Base ` y ) = ( Base ` A ) ) |
| 108 |
107
|
feq3d |
|- ( y = A -> ( z : t --> ( Base ` y ) <-> z : t --> ( Base ` A ) ) ) |
| 109 |
108
|
rexbidv |
|- ( y = A -> ( E. t e. Fin z : t --> ( Base ` y ) <-> E. t e. Fin z : t --> ( Base ` A ) ) ) |
| 110 |
106 109
|
anbi12d |
|- ( y = A -> ( ( y e. CMnd /\ E. t e. Fin z : t --> ( Base ` y ) ) <-> ( A e. CMnd /\ E. t e. Fin z : t --> ( Base ` A ) ) ) ) |
| 111 |
|
feq1 |
|- ( z = B -> ( z : t --> ( Base ` A ) <-> B : t --> ( Base ` A ) ) ) |
| 112 |
111
|
rexbidv |
|- ( z = B -> ( E. t e. Fin z : t --> ( Base ` A ) <-> E. t e. Fin B : t --> ( Base ` A ) ) ) |
| 113 |
112
|
anbi2d |
|- ( z = B -> ( ( A e. CMnd /\ E. t e. Fin z : t --> ( Base ` A ) ) <-> ( A e. CMnd /\ E. t e. Fin B : t --> ( Base ` A ) ) ) ) |
| 114 |
110 113
|
opelopabg |
|- ( ( A e. CMnd /\ B e. _V ) -> ( <. A , B >. e. { <. y , z >. | ( y e. CMnd /\ E. t e. Fin z : t --> ( Base ` y ) ) } <-> ( A e. CMnd /\ E. t e. Fin B : t --> ( Base ` A ) ) ) ) |
| 115 |
1 9 114
|
syl2anc |
|- ( ph -> ( <. A , B >. e. { <. y , z >. | ( y e. CMnd /\ E. t e. Fin z : t --> ( Base ` y ) ) } <-> ( A e. CMnd /\ E. t e. Fin B : t --> ( Base ` A ) ) ) ) |
| 116 |
1 105 115
|
mpbir2and |
|- ( ph -> <. A , B >. e. { <. y , z >. | ( y e. CMnd /\ E. t e. Fin z : t --> ( Base ` y ) ) } ) |
| 117 |
|
iotaex |
|- ( iota s E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) e. _V |
| 118 |
117
|
a1i |
|- ( ph -> ( iota s E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) e. _V ) |
| 119 |
5 95 116 118
|
fvmptd2 |
|- ( ph -> ( FinSum ` <. A , B >. ) = ( iota s E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) ) |
| 120 |
4 119
|
eqtrid |
|- ( ph -> ( A FinSum B ) = ( iota s E. m e. NN0 E. f ( f : ( 1 ... m ) -1-1-onto-> I /\ s = ( seq 1 ( ( +g ` A ) , ( n e. NN |-> ( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) ) |