Metamath Proof Explorer


Theorem bj-finsumval0

Description: Value of a finite sum. (Contributed by BJ, 9-Jun-2019) (Proof shortened by AV, 5-May-2021)

Ref Expression
Hypotheses bj-finsumval0.1 ( 𝜑𝐴 ∈ CMnd )
bj-finsumval0.2 ( 𝜑𝐼 ∈ Fin )
bj-finsumval0.3 ( 𝜑𝐵 : 𝐼 ⟶ ( Base ‘ 𝐴 ) )
Assertion bj-finsumval0 ( 𝜑 → ( 𝐴 FinSum 𝐵 ) = ( ℩ 𝑠𝑚 ∈ ℕ0𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 bj-finsumval0.1 ( 𝜑𝐴 ∈ CMnd )
2 bj-finsumval0.2 ( 𝜑𝐼 ∈ Fin )
3 bj-finsumval0.3 ( 𝜑𝐵 : 𝐼 ⟶ ( Base ‘ 𝐴 ) )
4 df-ov ( 𝐴 FinSum 𝐵 ) = ( FinSum ‘ ⟨ 𝐴 , 𝐵 ⟩ )
5 df-bj-finsum FinSum = ( 𝑥 ∈ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) } ↦ ( ℩ 𝑠𝑚 ∈ ℕ0𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) ) )
6 simpr ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ )
7 6 fveq2d ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → ( 1st𝑥 ) = ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
8 1 adantr ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → 𝐴 ∈ CMnd )
9 3 2 fexd ( 𝜑𝐵 ∈ V )
10 9 adantr ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → 𝐵 ∈ V )
11 op1stg ( ( 𝐴 ∈ CMnd ∧ 𝐵 ∈ V ) → ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐴 )
12 8 10 11 syl2anc ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐴 )
13 7 12 eqtrd ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → ( 1st𝑥 ) = 𝐴 )
14 6 fveq2d ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → ( 2nd𝑥 ) = ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
15 op2ndg ( ( 𝐴 ∈ CMnd ∧ 𝐵 ∈ V ) → ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐵 )
16 8 10 15 syl2anc ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐵 )
17 14 16 eqtrd ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → ( 2nd𝑥 ) = 𝐵 )
18 17 dmeqd ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → dom ( 2nd𝑥 ) = dom 𝐵 )
19 3 fdmd ( 𝜑 → dom 𝐵 = 𝐼 )
20 19 adantr ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → dom 𝐵 = 𝐼 )
21 18 20 eqtrd ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → dom ( 2nd𝑥 ) = 𝐼 )
22 f1oeq3 ( dom ( 2nd𝑥 ) = 𝐼 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ↔ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ) )
23 22 biimpd ( dom ( 2nd𝑥 ) = 𝐼 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ) )
24 23 ad2antll ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ) )
25 24 adantrd ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ) )
26 25 adantr ( ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ) )
27 eqidd ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → 1 = 1 )
28 simprl ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ) → ( 1st𝑥 ) = 𝐴 )
29 28 fveq2d ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ) → ( +g ‘ ( 1st𝑥 ) ) = ( +g𝐴 ) )
30 29 adantrr ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → ( +g ‘ ( 1st𝑥 ) ) = ( +g𝐴 ) )
31 simprrl ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ) → ( 2nd𝑥 ) = 𝐵 )
32 31 adantr ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 2nd𝑥 ) = 𝐵 )
33 32 fveq1d ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) = ( 𝐵 ‘ ( 𝑓𝑛 ) ) )
34 33 mpteq2dva ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) )
35 34 adantrr ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) )
36 27 30 35 seqeq123d ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) = seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) )
37 simprr ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → dom ( 2nd𝑥 ) = 𝐼 )
38 37 anim1ci ( ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 ∈ ℕ0 ∧ dom ( 2nd𝑥 ) = 𝐼 ) )
39 hashfz1 ( 𝑚 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑚 ) ) = 𝑚 )
40 39 eqcomd ( 𝑚 ∈ ℕ0𝑚 = ( ♯ ‘ ( 1 ... 𝑚 ) ) )
41 40 ad2antrl ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( 𝑚 ∈ ℕ0 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → 𝑚 = ( ♯ ‘ ( 1 ... 𝑚 ) ) )
42 fzfid ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( 𝑚 ∈ ℕ0 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → ( 1 ... 𝑚 ) ∈ Fin )
43 19.8a ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) → ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) )
44 43 adantr ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( 𝑚 ∈ ℕ0 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) )
45 hasheqf1oi ( ( 1 ... 𝑚 ) ∈ Fin → ( ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) → ( ♯ ‘ ( 1 ... 𝑚 ) ) = ( ♯ ‘ dom ( 2nd𝑥 ) ) ) )
46 42 44 45 sylc ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( 𝑚 ∈ ℕ0 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → ( ♯ ‘ ( 1 ... 𝑚 ) ) = ( ♯ ‘ dom ( 2nd𝑥 ) ) )
47 simprr ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( 𝑚 ∈ ℕ0 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → dom ( 2nd𝑥 ) = 𝐼 )
48 47 fveq2d ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( 𝑚 ∈ ℕ0 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → ( ♯ ‘ dom ( 2nd𝑥 ) ) = ( ♯ ‘ 𝐼 ) )
49 41 46 48 3eqtrd ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( 𝑚 ∈ ℕ0 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → 𝑚 = ( ♯ ‘ 𝐼 ) )
50 38 49 sylan2 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → 𝑚 = ( ♯ ‘ 𝐼 ) )
51 36 50 fveq12d ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) )
52 51 eqeq2d ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → ( 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ↔ 𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) )
53 52 biimpd ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → ( 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) → 𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) )
54 53 impancom ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) → ( ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) → 𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) )
55 54 com12 ( ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) → 𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) )
56 26 55 jcad ( ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) )
57 22 biimprd ( dom ( 2nd𝑥 ) = 𝐼 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ) )
58 57 ad2antll ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ) )
59 58 adantr ( ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ) )
60 59 adantrd ( ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ) )
61 eqidd ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → 1 = 1 )
62 simpl ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → ( 1st𝑥 ) = 𝐴 )
63 tru
64 62 63 jctir ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → ( ( 1st𝑥 ) = 𝐴 ∧ ⊤ ) )
65 64 ad2antrl ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → ( ( 1st𝑥 ) = 𝐴 ∧ ⊤ ) )
66 simpl ( ( ( 1st𝑥 ) = 𝐴 ∧ ⊤ ) → ( 1st𝑥 ) = 𝐴 )
67 66 eqcomd ( ( ( 1st𝑥 ) = 𝐴 ∧ ⊤ ) → 𝐴 = ( 1st𝑥 ) )
68 65 67 syl ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → 𝐴 = ( 1st𝑥 ) )
69 68 fveq2d ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → ( +g𝐴 ) = ( +g ‘ ( 1st𝑥 ) ) )
70 simpl ( ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) → ( 2nd𝑥 ) = 𝐵 )
71 70 eqcomd ( ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) → 𝐵 = ( 2nd𝑥 ) )
72 71 ad2antll ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ) → 𝐵 = ( 2nd𝑥 ) )
73 72 adantr ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝐵 = ( 2nd𝑥 ) )
74 73 fveq1d ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐵 ‘ ( 𝑓𝑛 ) ) = ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) )
75 74 adantlrr ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐵 ‘ ( 𝑓𝑛 ) ) = ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) )
76 75 mpteq2dva ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) )
77 61 69 76 seqeq123d ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) = seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) )
78 59 impcom ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) )
79 simprr ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → 𝑚 ∈ ℕ0 )
80 37 ad2antrl ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → dom ( 2nd𝑥 ) = 𝐼 )
81 78 79 80 49 syl12anc ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → 𝑚 = ( ♯ ‘ 𝐼 ) )
82 81 eqcomd ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → ( ♯ ‘ 𝐼 ) = 𝑚 )
83 77 82 fveq12d ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) )
84 83 eqeq2d ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → ( 𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ↔ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) )
85 84 biimpd ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼 ∧ ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) ) → ( 𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) → 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) )
86 85 impancom ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) → 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) )
87 86 com12 ( ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) → 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) )
88 60 87 jcad ( ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) ) )
89 56 88 impbid ( ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) )
90 89 ex ( ( ( 1st𝑥 ) = 𝐴 ∧ ( ( 2nd𝑥 ) = 𝐵 ∧ dom ( 2nd𝑥 ) = 𝐼 ) ) → ( 𝑚 ∈ ℕ0 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )
91 13 17 21 90 syl12anc ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → ( 𝑚 ∈ ℕ0 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) )
92 91 imp ( ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) )
93 92 exbidv ( ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) ∧ 𝑚 ∈ ℕ0 ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) )
94 93 rexbidva ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → ( ∃ 𝑚 ∈ ℕ0𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ0𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) )
95 94 iotabidv ( ( 𝜑𝑥 = ⟨ 𝐴 , 𝐵 ⟩ ) → ( ℩ 𝑠𝑚 ∈ ℕ0𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd𝑥 ) ‘ ( 𝑓𝑛 ) ) ) ) ‘ 𝑚 ) ) ) = ( ℩ 𝑠𝑚 ∈ ℕ0𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) )
96 eleq1 ( 𝑡 = 𝐼 → ( 𝑡 ∈ Fin ↔ 𝐼 ∈ Fin ) )
97 feq2 ( 𝑡 = 𝐼 → ( 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ↔ 𝐵 : 𝐼 ⟶ ( Base ‘ 𝐴 ) ) )
98 96 97 anbi12d ( 𝑡 = 𝐼 → ( ( 𝑡 ∈ Fin ∧ 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) ↔ ( 𝐼 ∈ Fin ∧ 𝐵 : 𝐼 ⟶ ( Base ‘ 𝐴 ) ) ) )
99 98 ceqsexgv ( 𝐼 ∈ Fin → ( ∃ 𝑡 ( 𝑡 = 𝐼 ∧ ( 𝑡 ∈ Fin ∧ 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) ) ↔ ( 𝐼 ∈ Fin ∧ 𝐵 : 𝐼 ⟶ ( Base ‘ 𝐴 ) ) ) )
100 2 99 syl ( 𝜑 → ( ∃ 𝑡 ( 𝑡 = 𝐼 ∧ ( 𝑡 ∈ Fin ∧ 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) ) ↔ ( 𝐼 ∈ Fin ∧ 𝐵 : 𝐼 ⟶ ( Base ‘ 𝐴 ) ) ) )
101 2 3 100 mpbir2and ( 𝜑 → ∃ 𝑡 ( 𝑡 = 𝐼 ∧ ( 𝑡 ∈ Fin ∧ 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) ) )
102 exsimpr ( ∃ 𝑡 ( 𝑡 = 𝐼 ∧ ( 𝑡 ∈ Fin ∧ 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) ) → ∃ 𝑡 ( 𝑡 ∈ Fin ∧ 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) )
103 101 102 syl ( 𝜑 → ∃ 𝑡 ( 𝑡 ∈ Fin ∧ 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) )
104 df-rex ( ∃ 𝑡 ∈ Fin 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ↔ ∃ 𝑡 ( 𝑡 ∈ Fin ∧ 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) )
105 103 104 sylibr ( 𝜑 → ∃ 𝑡 ∈ Fin 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) )
106 eleq1 ( 𝑦 = 𝐴 → ( 𝑦 ∈ CMnd ↔ 𝐴 ∈ CMnd ) )
107 fveq2 ( 𝑦 = 𝐴 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝐴 ) )
108 107 feq3d ( 𝑦 = 𝐴 → ( 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ↔ 𝑧 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) )
109 108 rexbidv ( 𝑦 = 𝐴 → ( ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ↔ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) )
110 106 109 anbi12d ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) ↔ ( 𝐴 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) ) )
111 feq1 ( 𝑧 = 𝐵 → ( 𝑧 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ↔ 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) )
112 111 rexbidv ( 𝑧 = 𝐵 → ( ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ↔ ∃ 𝑡 ∈ Fin 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) )
113 112 anbi2d ( 𝑧 = 𝐵 → ( ( 𝐴 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) ↔ ( 𝐴 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) ) )
114 110 113 opelopabg ( ( 𝐴 ∈ CMnd ∧ 𝐵 ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) } ↔ ( 𝐴 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) ) )
115 1 9 114 syl2anc ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) } ↔ ( 𝐴 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝐵 : 𝑡 ⟶ ( Base ‘ 𝐴 ) ) ) )
116 1 105 115 mpbir2and ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) } )
117 iotaex ( ℩ 𝑠𝑚 ∈ ℕ0𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ V
118 117 a1i ( 𝜑 → ( ℩ 𝑠𝑚 ∈ ℕ0𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ V )
119 5 95 116 118 fvmptd2 ( 𝜑 → ( FinSum ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ( ℩ 𝑠𝑚 ∈ ℕ0𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) )
120 4 119 syl5eq ( 𝜑 → ( 𝐴 FinSum 𝐵 ) = ( ℩ 𝑠𝑚 ∈ ℕ0𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐼𝑠 = ( seq 1 ( ( +g𝐴 ) , ( 𝑛 ∈ ℕ ↦ ( 𝐵 ‘ ( 𝑓𝑛 ) ) ) ) ‘ ( ♯ ‘ 𝐼 ) ) ) ) )