| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfinsum |
⊢ FinSum |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
vy |
⊢ 𝑦 |
| 3 |
|
vz |
⊢ 𝑧 |
| 4 |
2
|
cv |
⊢ 𝑦 |
| 5 |
|
ccmn |
⊢ CMnd |
| 6 |
4 5
|
wcel |
⊢ 𝑦 ∈ CMnd |
| 7 |
|
vt |
⊢ 𝑡 |
| 8 |
|
cfn |
⊢ Fin |
| 9 |
3
|
cv |
⊢ 𝑧 |
| 10 |
7
|
cv |
⊢ 𝑡 |
| 11 |
|
cbs |
⊢ Base |
| 12 |
4 11
|
cfv |
⊢ ( Base ‘ 𝑦 ) |
| 13 |
10 12 9
|
wf |
⊢ 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) |
| 14 |
13 7 8
|
wrex |
⊢ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) |
| 15 |
6 14
|
wa |
⊢ ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) |
| 16 |
15 2 3
|
copab |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) } |
| 17 |
|
vs |
⊢ 𝑠 |
| 18 |
|
vm |
⊢ 𝑚 |
| 19 |
|
cn0 |
⊢ ℕ0 |
| 20 |
|
vf |
⊢ 𝑓 |
| 21 |
20
|
cv |
⊢ 𝑓 |
| 22 |
|
c1 |
⊢ 1 |
| 23 |
|
cfz |
⊢ ... |
| 24 |
18
|
cv |
⊢ 𝑚 |
| 25 |
22 24 23
|
co |
⊢ ( 1 ... 𝑚 ) |
| 26 |
|
c2nd |
⊢ 2nd |
| 27 |
1
|
cv |
⊢ 𝑥 |
| 28 |
27 26
|
cfv |
⊢ ( 2nd ‘ 𝑥 ) |
| 29 |
28
|
cdm |
⊢ dom ( 2nd ‘ 𝑥 ) |
| 30 |
25 29 21
|
wf1o |
⊢ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) |
| 31 |
17
|
cv |
⊢ 𝑠 |
| 32 |
|
cplusg |
⊢ +g |
| 33 |
|
c1st |
⊢ 1st |
| 34 |
27 33
|
cfv |
⊢ ( 1st ‘ 𝑥 ) |
| 35 |
34 32
|
cfv |
⊢ ( +g ‘ ( 1st ‘ 𝑥 ) ) |
| 36 |
|
vn |
⊢ 𝑛 |
| 37 |
|
cn |
⊢ ℕ |
| 38 |
36
|
cv |
⊢ 𝑛 |
| 39 |
38 21
|
cfv |
⊢ ( 𝑓 ‘ 𝑛 ) |
| 40 |
39 28
|
cfv |
⊢ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) |
| 41 |
36 37 40
|
cmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 42 |
35 41 22
|
cseq |
⊢ seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 43 |
24 42
|
cfv |
⊢ ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) |
| 44 |
31 43
|
wceq |
⊢ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) |
| 45 |
30 44
|
wa |
⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) |
| 46 |
45 20
|
wex |
⊢ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) |
| 47 |
46 18 19
|
wrex |
⊢ ∃ 𝑚 ∈ ℕ0 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) |
| 48 |
47 17
|
cio |
⊢ ( ℩ 𝑠 ∃ 𝑚 ∈ ℕ0 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) ) |
| 49 |
1 16 48
|
cmpt |
⊢ ( 𝑥 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) } ↦ ( ℩ 𝑠 ∃ 𝑚 ∈ ℕ0 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) ) ) |
| 50 |
0 49
|
wceq |
⊢ FinSum = ( 𝑥 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) } ↦ ( ℩ 𝑠 ∃ 𝑚 ∈ ℕ0 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) ) ) |