Step |
Hyp |
Ref |
Expression |
0 |
|
cfinsum |
⊢ FinSum |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
vy |
⊢ 𝑦 |
3 |
|
vz |
⊢ 𝑧 |
4 |
2
|
cv |
⊢ 𝑦 |
5 |
|
ccmn |
⊢ CMnd |
6 |
4 5
|
wcel |
⊢ 𝑦 ∈ CMnd |
7 |
|
vt |
⊢ 𝑡 |
8 |
|
cfn |
⊢ Fin |
9 |
3
|
cv |
⊢ 𝑧 |
10 |
7
|
cv |
⊢ 𝑡 |
11 |
|
cbs |
⊢ Base |
12 |
4 11
|
cfv |
⊢ ( Base ‘ 𝑦 ) |
13 |
10 12 9
|
wf |
⊢ 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) |
14 |
13 7 8
|
wrex |
⊢ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) |
15 |
6 14
|
wa |
⊢ ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) |
16 |
15 2 3
|
copab |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) } |
17 |
|
vs |
⊢ 𝑠 |
18 |
|
vm |
⊢ 𝑚 |
19 |
|
cn0 |
⊢ ℕ0 |
20 |
|
vf |
⊢ 𝑓 |
21 |
20
|
cv |
⊢ 𝑓 |
22 |
|
c1 |
⊢ 1 |
23 |
|
cfz |
⊢ ... |
24 |
18
|
cv |
⊢ 𝑚 |
25 |
22 24 23
|
co |
⊢ ( 1 ... 𝑚 ) |
26 |
|
c2nd |
⊢ 2nd |
27 |
1
|
cv |
⊢ 𝑥 |
28 |
27 26
|
cfv |
⊢ ( 2nd ‘ 𝑥 ) |
29 |
28
|
cdm |
⊢ dom ( 2nd ‘ 𝑥 ) |
30 |
25 29 21
|
wf1o |
⊢ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) |
31 |
17
|
cv |
⊢ 𝑠 |
32 |
|
cplusg |
⊢ +g |
33 |
|
c1st |
⊢ 1st |
34 |
27 33
|
cfv |
⊢ ( 1st ‘ 𝑥 ) |
35 |
34 32
|
cfv |
⊢ ( +g ‘ ( 1st ‘ 𝑥 ) ) |
36 |
|
vn |
⊢ 𝑛 |
37 |
|
cn |
⊢ ℕ |
38 |
36
|
cv |
⊢ 𝑛 |
39 |
38 21
|
cfv |
⊢ ( 𝑓 ‘ 𝑛 ) |
40 |
39 28
|
cfv |
⊢ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) |
41 |
36 37 40
|
cmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
42 |
35 41 22
|
cseq |
⊢ seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
43 |
24 42
|
cfv |
⊢ ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) |
44 |
31 43
|
wceq |
⊢ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) |
45 |
30 44
|
wa |
⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) |
46 |
45 20
|
wex |
⊢ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) |
47 |
46 18 19
|
wrex |
⊢ ∃ 𝑚 ∈ ℕ0 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) |
48 |
47 17
|
cio |
⊢ ( ℩ 𝑠 ∃ 𝑚 ∈ ℕ0 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) ) |
49 |
1 16 48
|
cmpt |
⊢ ( 𝑥 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) } ↦ ( ℩ 𝑠 ∃ 𝑚 ∈ ℕ0 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) ) ) |
50 |
0 49
|
wceq |
⊢ FinSum = ( 𝑥 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ CMnd ∧ ∃ 𝑡 ∈ Fin 𝑧 : 𝑡 ⟶ ( Base ‘ 𝑦 ) ) } ↦ ( ℩ 𝑠 ∃ 𝑚 ∈ ℕ0 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ dom ( 2nd ‘ 𝑥 ) ∧ 𝑠 = ( seq 1 ( ( +g ‘ ( 1st ‘ 𝑥 ) ) , ( 𝑛 ∈ ℕ ↦ ( ( 2nd ‘ 𝑥 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) ) ) |