| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-finsumval0.1 |  | 
						
							| 2 |  | bj-finsumval0.2 |  | 
						
							| 3 |  | bj-finsumval0.3 |  | 
						
							| 4 |  | df-ov |  | 
						
							| 5 |  | df-bj-finsum |  | 
						
							| 6 |  | simpr |  | 
						
							| 7 | 6 | fveq2d |  | 
						
							| 8 | 1 | adantr |  | 
						
							| 9 | 3 2 | fexd |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 |  | op1stg |  | 
						
							| 12 | 8 10 11 | syl2anc |  | 
						
							| 13 | 7 12 | eqtrd |  | 
						
							| 14 | 6 | fveq2d |  | 
						
							| 15 |  | op2ndg |  | 
						
							| 16 | 8 10 15 | syl2anc |  | 
						
							| 17 | 14 16 | eqtrd |  | 
						
							| 18 | 17 | dmeqd |  | 
						
							| 19 | 3 | fdmd |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 18 20 | eqtrd |  | 
						
							| 22 |  | f1oeq3 |  | 
						
							| 23 | 22 | biimpd |  | 
						
							| 24 | 23 | ad2antll |  | 
						
							| 25 | 24 | adantrd |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | eqidd |  | 
						
							| 28 |  | simprl |  | 
						
							| 29 | 28 | fveq2d |  | 
						
							| 30 | 29 | adantrr |  | 
						
							| 31 |  | simprrl |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 32 | fveq1d |  | 
						
							| 34 | 33 | mpteq2dva |  | 
						
							| 35 | 34 | adantrr |  | 
						
							| 36 | 27 30 35 | seqeq123d |  | 
						
							| 37 |  | simprr |  | 
						
							| 38 | 37 | anim1ci |  | 
						
							| 39 |  | hashfz1 |  | 
						
							| 40 | 39 | eqcomd |  | 
						
							| 41 | 40 | ad2antrl |  | 
						
							| 42 |  | fzfid |  | 
						
							| 43 |  | 19.8a |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 |  | hasheqf1oi |  | 
						
							| 46 | 42 44 45 | sylc |  | 
						
							| 47 |  | simprr |  | 
						
							| 48 | 47 | fveq2d |  | 
						
							| 49 | 41 46 48 | 3eqtrd |  | 
						
							| 50 | 38 49 | sylan2 |  | 
						
							| 51 | 36 50 | fveq12d |  | 
						
							| 52 | 51 | eqeq2d |  | 
						
							| 53 | 52 | biimpd |  | 
						
							| 54 | 53 | impancom |  | 
						
							| 55 | 54 | com12 |  | 
						
							| 56 | 26 55 | jcad |  | 
						
							| 57 | 22 | biimprd |  | 
						
							| 58 | 57 | ad2antll |  | 
						
							| 59 | 58 | adantr |  | 
						
							| 60 | 59 | adantrd |  | 
						
							| 61 |  | eqidd |  | 
						
							| 62 |  | simpl |  | 
						
							| 63 |  | tru |  | 
						
							| 64 | 62 63 | jctir |  | 
						
							| 65 | 64 | ad2antrl |  | 
						
							| 66 |  | simpl |  | 
						
							| 67 | 66 | eqcomd |  | 
						
							| 68 | 65 67 | syl |  | 
						
							| 69 | 68 | fveq2d |  | 
						
							| 70 |  | simpl |  | 
						
							| 71 | 70 | eqcomd |  | 
						
							| 72 | 71 | ad2antll |  | 
						
							| 73 | 72 | adantr |  | 
						
							| 74 | 73 | fveq1d |  | 
						
							| 75 | 74 | adantlrr |  | 
						
							| 76 | 75 | mpteq2dva |  | 
						
							| 77 | 61 69 76 | seqeq123d |  | 
						
							| 78 | 59 | impcom |  | 
						
							| 79 |  | simprr |  | 
						
							| 80 | 37 | ad2antrl |  | 
						
							| 81 | 78 79 80 49 | syl12anc |  | 
						
							| 82 | 81 | eqcomd |  | 
						
							| 83 | 77 82 | fveq12d |  | 
						
							| 84 | 83 | eqeq2d |  | 
						
							| 85 | 84 | biimpd |  | 
						
							| 86 | 85 | impancom |  | 
						
							| 87 | 86 | com12 |  | 
						
							| 88 | 60 87 | jcad |  | 
						
							| 89 | 56 88 | impbid |  | 
						
							| 90 | 89 | ex |  | 
						
							| 91 | 13 17 21 90 | syl12anc |  | 
						
							| 92 | 91 | imp |  | 
						
							| 93 | 92 | exbidv |  | 
						
							| 94 | 93 | rexbidva |  | 
						
							| 95 | 94 | iotabidv |  | 
						
							| 96 |  | eleq1 |  | 
						
							| 97 |  | feq2 |  | 
						
							| 98 | 96 97 | anbi12d |  | 
						
							| 99 | 98 | ceqsexgv |  | 
						
							| 100 | 2 99 | syl |  | 
						
							| 101 | 2 3 100 | mpbir2and |  | 
						
							| 102 |  | exsimpr |  | 
						
							| 103 | 101 102 | syl |  | 
						
							| 104 |  | df-rex |  | 
						
							| 105 | 103 104 | sylibr |  | 
						
							| 106 |  | eleq1 |  | 
						
							| 107 |  | fveq2 |  | 
						
							| 108 | 107 | feq3d |  | 
						
							| 109 | 108 | rexbidv |  | 
						
							| 110 | 106 109 | anbi12d |  | 
						
							| 111 |  | feq1 |  | 
						
							| 112 | 111 | rexbidv |  | 
						
							| 113 | 112 | anbi2d |  | 
						
							| 114 | 110 113 | opelopabg |  | 
						
							| 115 | 1 9 114 | syl2anc |  | 
						
							| 116 | 1 105 115 | mpbir2and |  | 
						
							| 117 |  | iotaex |  | 
						
							| 118 | 117 | a1i |  | 
						
							| 119 | 5 95 116 118 | fvmptd2 |  | 
						
							| 120 | 4 119 | eqtrid |  |