Metamath Proof Explorer


Definition df-caragen

Description: Define the sigma-algebra generated by an outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion df-caragen
|- CaraGen = ( o e. OutMeas |-> { e e. ~P U. dom o | A. a e. ~P U. dom o ( ( o ` ( a i^i e ) ) +e ( o ` ( a \ e ) ) ) = ( o ` a ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccaragen
 |-  CaraGen
1 vo
 |-  o
2 come
 |-  OutMeas
3 ve
 |-  e
4 1 cv
 |-  o
5 4 cdm
 |-  dom o
6 5 cuni
 |-  U. dom o
7 6 cpw
 |-  ~P U. dom o
8 va
 |-  a
9 8 cv
 |-  a
10 3 cv
 |-  e
11 9 10 cin
 |-  ( a i^i e )
12 11 4 cfv
 |-  ( o ` ( a i^i e ) )
13 cxad
 |-  +e
14 9 10 cdif
 |-  ( a \ e )
15 14 4 cfv
 |-  ( o ` ( a \ e ) )
16 12 15 13 co
 |-  ( ( o ` ( a i^i e ) ) +e ( o ` ( a \ e ) ) )
17 9 4 cfv
 |-  ( o ` a )
18 16 17 wceq
 |-  ( ( o ` ( a i^i e ) ) +e ( o ` ( a \ e ) ) ) = ( o ` a )
19 18 8 7 wral
 |-  A. a e. ~P U. dom o ( ( o ` ( a i^i e ) ) +e ( o ` ( a \ e ) ) ) = ( o ` a )
20 19 3 7 crab
 |-  { e e. ~P U. dom o | A. a e. ~P U. dom o ( ( o ` ( a i^i e ) ) +e ( o ` ( a \ e ) ) ) = ( o ` a ) }
21 1 2 20 cmpt
 |-  ( o e. OutMeas |-> { e e. ~P U. dom o | A. a e. ~P U. dom o ( ( o ` ( a i^i e ) ) +e ( o ` ( a \ e ) ) ) = ( o ` a ) } )
22 0 21 wceq
 |-  CaraGen = ( o e. OutMeas |-> { e e. ~P U. dom o | A. a e. ~P U. dom o ( ( o ` ( a i^i e ) ) +e ( o ` ( a \ e ) ) ) = ( o ` a ) } )