| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccoe |
|- coeff |
| 1 |
|
vf |
|- f |
| 2 |
|
cply |
|- Poly |
| 3 |
|
cc |
|- CC |
| 4 |
3 2
|
cfv |
|- ( Poly ` CC ) |
| 5 |
|
va |
|- a |
| 6 |
|
cmap |
|- ^m |
| 7 |
|
cn0 |
|- NN0 |
| 8 |
3 7 6
|
co |
|- ( CC ^m NN0 ) |
| 9 |
|
vn |
|- n |
| 10 |
5
|
cv |
|- a |
| 11 |
|
cuz |
|- ZZ>= |
| 12 |
9
|
cv |
|- n |
| 13 |
|
caddc |
|- + |
| 14 |
|
c1 |
|- 1 |
| 15 |
12 14 13
|
co |
|- ( n + 1 ) |
| 16 |
15 11
|
cfv |
|- ( ZZ>= ` ( n + 1 ) ) |
| 17 |
10 16
|
cima |
|- ( a " ( ZZ>= ` ( n + 1 ) ) ) |
| 18 |
|
cc0 |
|- 0 |
| 19 |
18
|
csn |
|- { 0 } |
| 20 |
17 19
|
wceq |
|- ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } |
| 21 |
1
|
cv |
|- f |
| 22 |
|
vz |
|- z |
| 23 |
|
vk |
|- k |
| 24 |
|
cfz |
|- ... |
| 25 |
18 12 24
|
co |
|- ( 0 ... n ) |
| 26 |
23
|
cv |
|- k |
| 27 |
26 10
|
cfv |
|- ( a ` k ) |
| 28 |
|
cmul |
|- x. |
| 29 |
22
|
cv |
|- z |
| 30 |
|
cexp |
|- ^ |
| 31 |
29 26 30
|
co |
|- ( z ^ k ) |
| 32 |
27 31 28
|
co |
|- ( ( a ` k ) x. ( z ^ k ) ) |
| 33 |
25 32 23
|
csu |
|- sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) |
| 34 |
22 3 33
|
cmpt |
|- ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) |
| 35 |
21 34
|
wceq |
|- f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) |
| 36 |
20 35
|
wa |
|- ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) |
| 37 |
36 9 7
|
wrex |
|- E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) |
| 38 |
37 5 8
|
crio |
|- ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
| 39 |
1 4 38
|
cmpt |
|- ( f e. ( Poly ` CC ) |-> ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |
| 40 |
0 39
|
wceq |
|- coeff = ( f e. ( Poly ` CC ) |-> ( iota_ a e. ( CC ^m NN0 ) E. n e. NN0 ( ( a " ( ZZ>= ` ( n + 1 ) ) ) = { 0 } /\ f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |