| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccoe |
⊢ coeff |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cply |
⊢ Poly |
| 3 |
|
cc |
⊢ ℂ |
| 4 |
3 2
|
cfv |
⊢ ( Poly ‘ ℂ ) |
| 5 |
|
va |
⊢ 𝑎 |
| 6 |
|
cmap |
⊢ ↑m |
| 7 |
|
cn0 |
⊢ ℕ0 |
| 8 |
3 7 6
|
co |
⊢ ( ℂ ↑m ℕ0 ) |
| 9 |
|
vn |
⊢ 𝑛 |
| 10 |
5
|
cv |
⊢ 𝑎 |
| 11 |
|
cuz |
⊢ ℤ≥ |
| 12 |
9
|
cv |
⊢ 𝑛 |
| 13 |
|
caddc |
⊢ + |
| 14 |
|
c1 |
⊢ 1 |
| 15 |
12 14 13
|
co |
⊢ ( 𝑛 + 1 ) |
| 16 |
15 11
|
cfv |
⊢ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) |
| 17 |
10 16
|
cima |
⊢ ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 18 |
|
cc0 |
⊢ 0 |
| 19 |
18
|
csn |
⊢ { 0 } |
| 20 |
17 19
|
wceq |
⊢ ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } |
| 21 |
1
|
cv |
⊢ 𝑓 |
| 22 |
|
vz |
⊢ 𝑧 |
| 23 |
|
vk |
⊢ 𝑘 |
| 24 |
|
cfz |
⊢ ... |
| 25 |
18 12 24
|
co |
⊢ ( 0 ... 𝑛 ) |
| 26 |
23
|
cv |
⊢ 𝑘 |
| 27 |
26 10
|
cfv |
⊢ ( 𝑎 ‘ 𝑘 ) |
| 28 |
|
cmul |
⊢ · |
| 29 |
22
|
cv |
⊢ 𝑧 |
| 30 |
|
cexp |
⊢ ↑ |
| 31 |
29 26 30
|
co |
⊢ ( 𝑧 ↑ 𝑘 ) |
| 32 |
27 31 28
|
co |
⊢ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) |
| 33 |
25 32 23
|
csu |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) |
| 34 |
22 3 33
|
cmpt |
⊢ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 35 |
21 34
|
wceq |
⊢ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 36 |
20 35
|
wa |
⊢ ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 37 |
36 9 7
|
wrex |
⊢ ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 38 |
37 5 8
|
crio |
⊢ ( ℩ 𝑎 ∈ ( ℂ ↑m ℕ0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 39 |
1 4 38
|
cmpt |
⊢ ( 𝑓 ∈ ( Poly ‘ ℂ ) ↦ ( ℩ 𝑎 ∈ ( ℂ ↑m ℕ0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
| 40 |
0 39
|
wceq |
⊢ coeff = ( 𝑓 ∈ ( Poly ‘ ℂ ) ↦ ( ℩ 𝑎 ∈ ( ℂ ↑m ℕ0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |