Metamath Proof Explorer


Definition df-coe

Description: Define the coefficient function for a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion df-coe coeff=fPolyιa0|n0an+1=0f=zk=0nakzk

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccoe classcoeff
1 vf setvarf
2 cply classPoly
3 cc class
4 3 2 cfv classPoly
5 va setvara
6 cmap class𝑚
7 cn0 class0
8 3 7 6 co class0
9 vn setvarn
10 5 cv setvara
11 cuz class
12 9 cv setvarn
13 caddc class+
14 c1 class1
15 12 14 13 co classn+1
16 15 11 cfv classn+1
17 10 16 cima classan+1
18 cc0 class0
19 18 csn class0
20 17 19 wceq wffan+1=0
21 1 cv setvarf
22 vz setvarz
23 vk setvark
24 cfz class
25 18 12 24 co class0n
26 23 cv setvark
27 26 10 cfv classak
28 cmul class×
29 22 cv setvarz
30 cexp class^
31 29 26 30 co classzk
32 27 31 28 co classakzk
33 25 32 23 csu classk=0nakzk
34 22 3 33 cmpt classzk=0nakzk
35 21 34 wceq wfff=zk=0nakzk
36 20 35 wa wffan+1=0f=zk=0nakzk
37 36 9 7 wrex wffn0an+1=0f=zk=0nakzk
38 37 5 8 crio classιa0|n0an+1=0f=zk=0nakzk
39 1 4 38 cmpt classfPolyιa0|n0an+1=0f=zk=0nakzk
40 0 39 wceq wffcoeff=fPolyιa0|n0an+1=0f=zk=0nakzk