| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfib |
|- Fibci |
| 1 |
|
cc0 |
|- 0 |
| 2 |
|
c1 |
|- 1 |
| 3 |
1 2
|
cs2 |
|- <" 0 1 "> |
| 4 |
|
csseq |
|- seqstr |
| 5 |
|
vw |
|- w |
| 6 |
|
cn0 |
|- NN0 |
| 7 |
6
|
cword |
|- Word NN0 |
| 8 |
|
chash |
|- # |
| 9 |
8
|
ccnv |
|- `' # |
| 10 |
|
cuz |
|- ZZ>= |
| 11 |
|
c2 |
|- 2 |
| 12 |
11 10
|
cfv |
|- ( ZZ>= ` 2 ) |
| 13 |
9 12
|
cima |
|- ( `' # " ( ZZ>= ` 2 ) ) |
| 14 |
7 13
|
cin |
|- ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |
| 15 |
5
|
cv |
|- w |
| 16 |
15 8
|
cfv |
|- ( # ` w ) |
| 17 |
|
cmin |
|- - |
| 18 |
16 11 17
|
co |
|- ( ( # ` w ) - 2 ) |
| 19 |
18 15
|
cfv |
|- ( w ` ( ( # ` w ) - 2 ) ) |
| 20 |
|
caddc |
|- + |
| 21 |
16 2 17
|
co |
|- ( ( # ` w ) - 1 ) |
| 22 |
21 15
|
cfv |
|- ( w ` ( ( # ` w ) - 1 ) ) |
| 23 |
19 22 20
|
co |
|- ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) |
| 24 |
5 14 23
|
cmpt |
|- ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) |
| 25 |
3 24 4
|
co |
|- ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |
| 26 |
0 25
|
wceq |
|- Fibci = ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |