| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfib |
⊢ Fibci |
| 1 |
|
cc0 |
⊢ 0 |
| 2 |
|
c1 |
⊢ 1 |
| 3 |
1 2
|
cs2 |
⊢ 〈“ 0 1 ”〉 |
| 4 |
|
csseq |
⊢ seqstr |
| 5 |
|
vw |
⊢ 𝑤 |
| 6 |
|
cn0 |
⊢ ℕ0 |
| 7 |
6
|
cword |
⊢ Word ℕ0 |
| 8 |
|
chash |
⊢ ♯ |
| 9 |
8
|
ccnv |
⊢ ◡ ♯ |
| 10 |
|
cuz |
⊢ ℤ≥ |
| 11 |
|
c2 |
⊢ 2 |
| 12 |
11 10
|
cfv |
⊢ ( ℤ≥ ‘ 2 ) |
| 13 |
9 12
|
cima |
⊢ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) |
| 14 |
7 13
|
cin |
⊢ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) |
| 15 |
5
|
cv |
⊢ 𝑤 |
| 16 |
15 8
|
cfv |
⊢ ( ♯ ‘ 𝑤 ) |
| 17 |
|
cmin |
⊢ − |
| 18 |
16 11 17
|
co |
⊢ ( ( ♯ ‘ 𝑤 ) − 2 ) |
| 19 |
18 15
|
cfv |
⊢ ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) |
| 20 |
|
caddc |
⊢ + |
| 21 |
16 2 17
|
co |
⊢ ( ( ♯ ‘ 𝑤 ) − 1 ) |
| 22 |
21 15
|
cfv |
⊢ ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) |
| 23 |
19 22 20
|
co |
⊢ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) |
| 24 |
5 14 23
|
cmpt |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) |
| 25 |
3 24 4
|
co |
⊢ ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) |
| 26 |
0 25
|
wceq |
⊢ Fibci = ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) |