Step |
Hyp |
Ref |
Expression |
1 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 0 1 ”〉 ) = 2 |
2 |
1
|
eqcomi |
⊢ 2 = ( ♯ ‘ 〈“ 0 1 ”〉 ) |
3 |
2
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) |
4 |
3
|
imaeq2i |
⊢ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) = ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) |
5 |
4
|
ineq2i |
⊢ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) = ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) |
6 |
|
eqid |
⊢ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) = ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) |
7 |
5 6
|
mpteq12i |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) = ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) |
8 |
|
elin |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) ↔ ( 𝑤 ∈ Word ℕ0 ∧ 𝑤 ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) ) |
9 |
8
|
simplbi |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → 𝑤 ∈ Word ℕ0 ) |
10 |
|
wrdf |
⊢ ( 𝑤 ∈ Word ℕ0 → 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ ℕ0 ) |
11 |
9 10
|
syl |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ ℕ0 ) |
12 |
8
|
simprbi |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → 𝑤 ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) |
13 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
14 |
|
ffn |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) |
15 |
|
elpreima |
⊢ ( ♯ Fn V → ( 𝑤 ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ↔ ( 𝑤 ∈ V ∧ ( ♯ ‘ 𝑤 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) ) |
16 |
13 14 15
|
mp2b |
⊢ ( 𝑤 ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ↔ ( 𝑤 ∈ V ∧ ( ♯ ‘ 𝑤 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) |
17 |
12 16
|
sylib |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( 𝑤 ∈ V ∧ ( ♯ ‘ 𝑤 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) |
18 |
17
|
simprd |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) |
19 |
18 3
|
eleqtrrdi |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ( ℤ≥ ‘ 2 ) ) |
20 |
|
uznn0sub |
⊢ ( ( ♯ ‘ 𝑤 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( ♯ ‘ 𝑤 ) − 2 ) ∈ ℕ0 ) |
21 |
19 20
|
syl |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( ( ♯ ‘ 𝑤 ) − 2 ) ∈ ℕ0 ) |
22 |
|
1zzd |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → 1 ∈ ℤ ) |
23 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
24 |
23
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 1 + 1 ) ) = ( ℤ≥ ‘ 2 ) |
25 |
19 24
|
eleqtrrdi |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
26 |
|
peano2uzr |
⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝑤 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ( ℤ≥ ‘ 1 ) ) |
27 |
22 25 26
|
syl2anc |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ( ℤ≥ ‘ 1 ) ) |
28 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
29 |
27 28
|
eleqtrrdi |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ℕ ) |
30 |
29
|
nnred |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( ♯ ‘ 𝑤 ) ∈ ℝ ) |
31 |
|
2rp |
⊢ 2 ∈ ℝ+ |
32 |
31
|
a1i |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → 2 ∈ ℝ+ ) |
33 |
30 32
|
ltsubrpd |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( ( ♯ ‘ 𝑤 ) − 2 ) < ( ♯ ‘ 𝑤 ) ) |
34 |
|
elfzo0 |
⊢ ( ( ( ♯ ‘ 𝑤 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↔ ( ( ( ♯ ‘ 𝑤 ) − 2 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑤 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝑤 ) − 2 ) < ( ♯ ‘ 𝑤 ) ) ) |
35 |
21 29 33 34
|
syl3anbrc |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( ( ♯ ‘ 𝑤 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ) |
36 |
11 35
|
ffvelrnd |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) ∈ ℕ0 ) |
37 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝑤 ) ∈ ℕ → ( ( ♯ ‘ 𝑤 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ) |
38 |
29 37
|
syl |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( ( ♯ ‘ 𝑤 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ) |
39 |
11 38
|
ffvelrnd |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ∈ ℕ0 ) |
40 |
36 39
|
nn0addcld |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) → ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ∈ ℕ0 ) |
41 |
7 40
|
fmpti |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) : ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) ⟶ ℕ0 |