Metamath Proof Explorer


Theorem fiblem

Description: Lemma for fib0 , fib1 and fibp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fiblem w Word 0 . -1 2 w w 2 + w w 1 : Word 0 . -1 ⟨“ 0 1 ”⟩ 0

Proof

Step Hyp Ref Expression
1 s2len ⟨“ 0 1 ”⟩ = 2
2 1 eqcomi 2 = ⟨“ 0 1 ”⟩
3 2 fveq2i 2 = ⟨“ 0 1 ”⟩
4 3 imaeq2i . -1 2 = . -1 ⟨“ 0 1 ”⟩
5 4 ineq2i Word 0 . -1 2 = Word 0 . -1 ⟨“ 0 1 ”⟩
6 eqid w w 2 + w w 1 = w w 2 + w w 1
7 5 6 mpteq12i w Word 0 . -1 2 w w 2 + w w 1 = w Word 0 . -1 ⟨“ 0 1 ”⟩ w w 2 + w w 1
8 elin w Word 0 . -1 ⟨“ 0 1 ”⟩ w Word 0 w . -1 ⟨“ 0 1 ”⟩
9 8 simplbi w Word 0 . -1 ⟨“ 0 1 ”⟩ w Word 0
10 wrdf w Word 0 w : 0 ..^ w 0
11 9 10 syl w Word 0 . -1 ⟨“ 0 1 ”⟩ w : 0 ..^ w 0
12 8 simprbi w Word 0 . -1 ⟨“ 0 1 ”⟩ w . -1 ⟨“ 0 1 ”⟩
13 hashf . : V 0 +∞
14 ffn . : V 0 +∞ . Fn V
15 elpreima . Fn V w . -1 ⟨“ 0 1 ”⟩ w V w ⟨“ 0 1 ”⟩
16 13 14 15 mp2b w . -1 ⟨“ 0 1 ”⟩ w V w ⟨“ 0 1 ”⟩
17 12 16 sylib w Word 0 . -1 ⟨“ 0 1 ”⟩ w V w ⟨“ 0 1 ”⟩
18 17 simprd w Word 0 . -1 ⟨“ 0 1 ”⟩ w ⟨“ 0 1 ”⟩
19 18 3 eleqtrrdi w Word 0 . -1 ⟨“ 0 1 ”⟩ w 2
20 uznn0sub w 2 w 2 0
21 19 20 syl w Word 0 . -1 ⟨“ 0 1 ”⟩ w 2 0
22 1zzd w Word 0 . -1 ⟨“ 0 1 ”⟩ 1
23 1p1e2 1 + 1 = 2
24 23 fveq2i 1 + 1 = 2
25 19 24 eleqtrrdi w Word 0 . -1 ⟨“ 0 1 ”⟩ w 1 + 1
26 peano2uzr 1 w 1 + 1 w 1
27 22 25 26 syl2anc w Word 0 . -1 ⟨“ 0 1 ”⟩ w 1
28 nnuz = 1
29 27 28 eleqtrrdi w Word 0 . -1 ⟨“ 0 1 ”⟩ w
30 29 nnred w Word 0 . -1 ⟨“ 0 1 ”⟩ w
31 2rp 2 +
32 31 a1i w Word 0 . -1 ⟨“ 0 1 ”⟩ 2 +
33 30 32 ltsubrpd w Word 0 . -1 ⟨“ 0 1 ”⟩ w 2 < w
34 elfzo0 w 2 0 ..^ w w 2 0 w w 2 < w
35 21 29 33 34 syl3anbrc w Word 0 . -1 ⟨“ 0 1 ”⟩ w 2 0 ..^ w
36 11 35 ffvelrnd w Word 0 . -1 ⟨“ 0 1 ”⟩ w w 2 0
37 fzo0end w w 1 0 ..^ w
38 29 37 syl w Word 0 . -1 ⟨“ 0 1 ”⟩ w 1 0 ..^ w
39 11 38 ffvelrnd w Word 0 . -1 ⟨“ 0 1 ”⟩ w w 1 0
40 36 39 nn0addcld w Word 0 . -1 ⟨“ 0 1 ”⟩ w w 2 + w w 1 0
41 7 40 fmpti w Word 0 . -1 2 w w 2 + w w 1 : Word 0 . -1 ⟨“ 0 1 ”⟩ 0