| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fib |
|
| 2 |
1
|
fveq1i |
|
| 3 |
2
|
a1i |
|
| 4 |
|
nn0ex |
|
| 5 |
4
|
a1i |
|
| 6 |
|
0nn0 |
|
| 7 |
6
|
a1i |
|
| 8 |
|
1nn0 |
|
| 9 |
8
|
a1i |
|
| 10 |
7 9
|
s2cld |
|
| 11 |
|
eqid |
|
| 12 |
|
fiblem |
|
| 13 |
12
|
a1i |
|
| 14 |
|
eluzp1p1 |
|
| 15 |
|
nnuz |
|
| 16 |
14 15
|
eleq2s |
|
| 17 |
|
s2len |
|
| 18 |
|
1p1e2 |
|
| 19 |
17 18
|
eqtr4i |
|
| 20 |
19
|
fveq2i |
|
| 21 |
16 20
|
eleqtrrdi |
|
| 22 |
5 10 11 13 21
|
sseqp1 |
|
| 23 |
|
id |
|
| 24 |
|
fveq2 |
|
| 25 |
24
|
oveq1d |
|
| 26 |
23 25
|
fveq12d |
|
| 27 |
24
|
oveq1d |
|
| 28 |
23 27
|
fveq12d |
|
| 29 |
26 28
|
oveq12d |
|
| 30 |
29
|
cbvmptv |
|
| 31 |
30
|
a1i |
|
| 32 |
|
simpr |
|
| 33 |
1
|
a1i |
|
| 34 |
33
|
reseq1d |
|
| 35 |
32 34
|
eqtr4d |
|
| 36 |
|
simpr |
|
| 37 |
36
|
fveq2d |
|
| 38 |
5 10 11 13
|
sseqf |
|
| 39 |
1
|
a1i |
|
| 40 |
39
|
feq1d |
|
| 41 |
38 40
|
mpbird |
|
| 42 |
|
nnnn0 |
|
| 43 |
42 9
|
nn0addcld |
|
| 44 |
5 41 43
|
subiwrdlen |
|
| 45 |
44
|
adantr |
|
| 46 |
37 45
|
eqtrd |
|
| 47 |
46
|
oveq1d |
|
| 48 |
|
nncn |
|
| 49 |
|
1cnd |
|
| 50 |
|
2cnd |
|
| 51 |
48 49 50
|
addsubassd |
|
| 52 |
48 50 49
|
subsub2d |
|
| 53 |
|
2m1e1 |
|
| 54 |
53
|
oveq2i |
|
| 55 |
54
|
a1i |
|
| 56 |
51 52 55
|
3eqtr2d |
|
| 57 |
56
|
adantr |
|
| 58 |
47 57
|
eqtrd |
|
| 59 |
58
|
fveq2d |
|
| 60 |
36
|
fveq1d |
|
| 61 |
|
nnm1nn0 |
|
| 62 |
|
peano2nn |
|
| 63 |
|
nnre |
|
| 64 |
|
2re |
|
| 65 |
64
|
a1i |
|
| 66 |
63 65
|
readdcld |
|
| 67 |
|
1red |
|
| 68 |
|
2rp |
|
| 69 |
68
|
a1i |
|
| 70 |
63 69
|
ltaddrpd |
|
| 71 |
63 66 67 70
|
ltsub1dd |
|
| 72 |
48 50 49
|
addsubassd |
|
| 73 |
53
|
oveq2i |
|
| 74 |
72 73
|
eqtrdi |
|
| 75 |
71 74
|
breqtrd |
|
| 76 |
|
elfzo0 |
|
| 77 |
61 62 75 76
|
syl3anbrc |
|
| 78 |
77
|
adantr |
|
| 79 |
|
fvres |
|
| 80 |
78 79
|
syl |
|
| 81 |
59 60 80
|
3eqtrd |
|
| 82 |
46
|
oveq1d |
|
| 83 |
|
simpl |
|
| 84 |
83
|
nncnd |
|
| 85 |
|
1cnd |
|
| 86 |
84 85
|
pncand |
|
| 87 |
82 86
|
eqtrd |
|
| 88 |
87
|
fveq2d |
|
| 89 |
36
|
fveq1d |
|
| 90 |
|
nn0fz0 |
|
| 91 |
42 90
|
sylib |
|
| 92 |
|
nnz |
|
| 93 |
|
fzval3 |
|
| 94 |
92 93
|
syl |
|
| 95 |
91 94
|
eleqtrd |
|
| 96 |
95
|
adantr |
|
| 97 |
|
fvres |
|
| 98 |
96 97
|
syl |
|
| 99 |
88 89 98
|
3eqtrd |
|
| 100 |
81 99
|
oveq12d |
|
| 101 |
35 100
|
syldan |
|
| 102 |
39
|
reseq1d |
|
| 103 |
5 41 43
|
subiwrd |
|
| 104 |
|
ovex |
|
| 105 |
1 104
|
eqeltri |
|
| 106 |
105
|
resex |
|
| 107 |
106
|
a1i |
|
| 108 |
18
|
fveq2i |
|
| 109 |
16 108
|
eleqtrdi |
|
| 110 |
44 109
|
eqeltrd |
|
| 111 |
|
hashf |
|
| 112 |
|
ffn |
|
| 113 |
|
elpreima |
|
| 114 |
111 112 113
|
mp2b |
|
| 115 |
107 110 114
|
sylanbrc |
|
| 116 |
103 115
|
elind |
|
| 117 |
102 116
|
eqeltrrd |
|
| 118 |
|
ovex |
|
| 119 |
118
|
a1i |
|
| 120 |
31 101 117 119
|
fvmptd |
|
| 121 |
3 22 120
|
3eqtrd |
|