| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fib |
⊢ Fibci = ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) |
| 2 |
1
|
fveq1i |
⊢ ( Fibci ‘ ( 𝑁 + 1 ) ) = ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ‘ ( 𝑁 + 1 ) ) |
| 3 |
2
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( Fibci ‘ ( 𝑁 + 1 ) ) = ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ‘ ( 𝑁 + 1 ) ) ) |
| 4 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 5 |
4
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ℕ0 ∈ V ) |
| 6 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 7 |
6
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℕ0 ) |
| 8 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 9 |
8
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℕ0 ) |
| 10 |
7 9
|
s2cld |
⊢ ( 𝑁 ∈ ℕ → 〈“ 0 1 ”〉 ∈ Word ℕ0 ) |
| 11 |
|
eqid |
⊢ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) = ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) |
| 12 |
|
fiblem |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) : ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) ⟶ ℕ0 |
| 13 |
12
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) : ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) ⟶ ℕ0 ) |
| 14 |
|
eluzp1p1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 15 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 16 |
14 15
|
eleq2s |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 17 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 0 1 ”〉 ) = 2 |
| 18 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 19 |
17 18
|
eqtr4i |
⊢ ( ♯ ‘ 〈“ 0 1 ”〉 ) = ( 1 + 1 ) |
| 20 |
19
|
fveq2i |
⊢ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
| 21 |
16 20
|
eleqtrrdi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) |
| 22 |
5 10 11 13 21
|
sseqp1 |
⊢ ( 𝑁 ∈ ℕ → ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ‘ ( 𝑁 + 1 ) ) = ( ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ‘ ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) ) |
| 23 |
|
id |
⊢ ( 𝑤 = 𝑡 → 𝑤 = 𝑡 ) |
| 24 |
|
fveq2 |
⊢ ( 𝑤 = 𝑡 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑡 ) ) |
| 25 |
24
|
oveq1d |
⊢ ( 𝑤 = 𝑡 → ( ( ♯ ‘ 𝑤 ) − 2 ) = ( ( ♯ ‘ 𝑡 ) − 2 ) ) |
| 26 |
23 25
|
fveq12d |
⊢ ( 𝑤 = 𝑡 → ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) = ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 2 ) ) ) |
| 27 |
24
|
oveq1d |
⊢ ( 𝑤 = 𝑡 → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( ( ♯ ‘ 𝑡 ) − 1 ) ) |
| 28 |
23 27
|
fveq12d |
⊢ ( 𝑤 = 𝑡 → ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ) |
| 29 |
26 28
|
oveq12d |
⊢ ( 𝑤 = 𝑡 → ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) = ( ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 2 ) ) + ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ) ) |
| 30 |
29
|
cbvmptv |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) = ( 𝑡 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 2 ) ) + ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ) ) |
| 31 |
30
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) = ( 𝑡 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 2 ) ) + ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ) ) ) |
| 32 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → 𝑡 = ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
| 33 |
1
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → Fibci = ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ) |
| 34 |
33
|
reseq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) = ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
| 35 |
32 34
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
| 36 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
| 37 |
36
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ♯ ‘ 𝑡 ) = ( ♯ ‘ ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) ) |
| 38 |
5 10 11 13
|
sseqf |
⊢ ( 𝑁 ∈ ℕ → ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) : ℕ0 ⟶ ℕ0 ) |
| 39 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℕ → Fibci = ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ) |
| 40 |
39
|
feq1d |
⊢ ( 𝑁 ∈ ℕ → ( Fibci : ℕ0 ⟶ ℕ0 ↔ ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) : ℕ0 ⟶ ℕ0 ) ) |
| 41 |
38 40
|
mpbird |
⊢ ( 𝑁 ∈ ℕ → Fibci : ℕ0 ⟶ ℕ0 ) |
| 42 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 43 |
42 9
|
nn0addcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 44 |
5 41 43
|
subiwrdlen |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) = ( 𝑁 + 1 ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ♯ ‘ ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) = ( 𝑁 + 1 ) ) |
| 46 |
37 45
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ♯ ‘ 𝑡 ) = ( 𝑁 + 1 ) ) |
| 47 |
46
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ( ♯ ‘ 𝑡 ) − 2 ) = ( ( 𝑁 + 1 ) − 2 ) ) |
| 48 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 49 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
| 50 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
| 51 |
48 49 50
|
addsubassd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 2 ) = ( 𝑁 + ( 1 − 2 ) ) ) |
| 52 |
48 50 49
|
subsub2d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − ( 2 − 1 ) ) = ( 𝑁 + ( 1 − 2 ) ) ) |
| 53 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 54 |
53
|
oveq2i |
⊢ ( 𝑁 − ( 2 − 1 ) ) = ( 𝑁 − 1 ) |
| 55 |
54
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − ( 2 − 1 ) ) = ( 𝑁 − 1 ) ) |
| 56 |
51 52 55
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 2 ) = ( 𝑁 − 1 ) ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ( 𝑁 + 1 ) − 2 ) = ( 𝑁 − 1 ) ) |
| 58 |
47 57
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ( ♯ ‘ 𝑡 ) − 2 ) = ( 𝑁 − 1 ) ) |
| 59 |
58
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 2 ) ) = ( 𝑡 ‘ ( 𝑁 − 1 ) ) ) |
| 60 |
36
|
fveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( 𝑡 ‘ ( 𝑁 − 1 ) ) = ( ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ‘ ( 𝑁 − 1 ) ) ) |
| 61 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 62 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
| 63 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 64 |
|
2re |
⊢ 2 ∈ ℝ |
| 65 |
64
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
| 66 |
63 65
|
readdcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 2 ) ∈ ℝ ) |
| 67 |
|
1red |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) |
| 68 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 69 |
68
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ+ ) |
| 70 |
63 69
|
ltaddrpd |
⊢ ( 𝑁 ∈ ℕ → 𝑁 < ( 𝑁 + 2 ) ) |
| 71 |
63 66 67 70
|
ltsub1dd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) < ( ( 𝑁 + 2 ) − 1 ) ) |
| 72 |
48 50 49
|
addsubassd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 2 ) − 1 ) = ( 𝑁 + ( 2 − 1 ) ) ) |
| 73 |
53
|
oveq2i |
⊢ ( 𝑁 + ( 2 − 1 ) ) = ( 𝑁 + 1 ) |
| 74 |
72 73
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 2 ) − 1 ) = ( 𝑁 + 1 ) ) |
| 75 |
71 74
|
breqtrd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) < ( 𝑁 + 1 ) ) |
| 76 |
|
elfzo0 |
⊢ ( ( 𝑁 − 1 ) ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ↔ ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑁 + 1 ) ∈ ℕ ∧ ( 𝑁 − 1 ) < ( 𝑁 + 1 ) ) ) |
| 77 |
61 62 75 76
|
syl3anbrc |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( 𝑁 − 1 ) ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 79 |
|
fvres |
⊢ ( ( 𝑁 − 1 ) ∈ ( 0 ..^ ( 𝑁 + 1 ) ) → ( ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ‘ ( 𝑁 − 1 ) ) = ( Fibci ‘ ( 𝑁 − 1 ) ) ) |
| 80 |
78 79
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ‘ ( 𝑁 − 1 ) ) = ( Fibci ‘ ( 𝑁 − 1 ) ) ) |
| 81 |
59 60 80
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 2 ) ) = ( Fibci ‘ ( 𝑁 − 1 ) ) ) |
| 82 |
46
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ( ♯ ‘ 𝑡 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
| 83 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → 𝑁 ∈ ℕ ) |
| 84 |
83
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → 𝑁 ∈ ℂ ) |
| 85 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → 1 ∈ ℂ ) |
| 86 |
84 85
|
pncand |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 87 |
82 86
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ( ♯ ‘ 𝑡 ) − 1 ) = 𝑁 ) |
| 88 |
87
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) = ( 𝑡 ‘ 𝑁 ) ) |
| 89 |
36
|
fveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( 𝑡 ‘ 𝑁 ) = ( ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ‘ 𝑁 ) ) |
| 90 |
|
nn0fz0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 91 |
42 90
|
sylib |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 92 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 93 |
|
fzval3 |
⊢ ( 𝑁 ∈ ℤ → ( 0 ... 𝑁 ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 94 |
92 93
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 0 ... 𝑁 ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 95 |
91 94
|
eleqtrd |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → 𝑁 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 97 |
|
fvres |
⊢ ( 𝑁 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) → ( ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ‘ 𝑁 ) = ( Fibci ‘ 𝑁 ) ) |
| 98 |
96 97
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ‘ 𝑁 ) = ( Fibci ‘ 𝑁 ) ) |
| 99 |
88 89 98
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) = ( Fibci ‘ 𝑁 ) ) |
| 100 |
81 99
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 2 ) ) + ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ) = ( ( Fibci ‘ ( 𝑁 − 1 ) ) + ( Fibci ‘ 𝑁 ) ) ) |
| 101 |
35 100
|
syldan |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑡 = ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) → ( ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 2 ) ) + ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ) = ( ( Fibci ‘ ( 𝑁 − 1 ) ) + ( Fibci ‘ 𝑁 ) ) ) |
| 102 |
39
|
reseq1d |
⊢ ( 𝑁 ∈ ℕ → ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) = ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
| 103 |
5 41 43
|
subiwrd |
⊢ ( 𝑁 ∈ ℕ → ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ∈ Word ℕ0 ) |
| 104 |
|
ovex |
⊢ ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ∈ V |
| 105 |
1 104
|
eqeltri |
⊢ Fibci ∈ V |
| 106 |
105
|
resex |
⊢ ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ∈ V |
| 107 |
106
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ∈ V ) |
| 108 |
18
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 1 + 1 ) ) = ( ℤ≥ ‘ 2 ) |
| 109 |
16 108
|
eleqtrdi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 110 |
44 109
|
eqeltrd |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 111 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
| 112 |
|
ffn |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) |
| 113 |
|
elpreima |
⊢ ( ♯ Fn V → ( ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ∈ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ↔ ( ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ∈ V ∧ ( ♯ ‘ ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) ) |
| 114 |
111 112 113
|
mp2b |
⊢ ( ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ∈ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ↔ ( ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ∈ V ∧ ( ♯ ‘ ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 115 |
107 110 114
|
sylanbrc |
⊢ ( 𝑁 ∈ ℕ → ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ∈ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) |
| 116 |
103 115
|
elind |
⊢ ( 𝑁 ∈ ℕ → ( Fibci ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ) |
| 117 |
102 116
|
eqeltrrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ) |
| 118 |
|
ovex |
⊢ ( ( Fibci ‘ ( 𝑁 − 1 ) ) + ( Fibci ‘ 𝑁 ) ) ∈ V |
| 119 |
118
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( ( Fibci ‘ ( 𝑁 − 1 ) ) + ( Fibci ‘ 𝑁 ) ) ∈ V ) |
| 120 |
31 101 117 119
|
fvmptd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ‘ ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ↾ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) = ( ( Fibci ‘ ( 𝑁 − 1 ) ) + ( Fibci ‘ 𝑁 ) ) ) |
| 121 |
3 22 120
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( Fibci ‘ ( 𝑁 + 1 ) ) = ( ( Fibci ‘ ( 𝑁 − 1 ) ) + ( Fibci ‘ 𝑁 ) ) ) |