Step |
Hyp |
Ref |
Expression |
1 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
2 |
1
|
fveq2i |
⊢ ( Fibci ‘ ( 1 + 1 ) ) = ( Fibci ‘ 2 ) |
3 |
|
1nn |
⊢ 1 ∈ ℕ |
4 |
|
fibp1 |
⊢ ( 1 ∈ ℕ → ( Fibci ‘ ( 1 + 1 ) ) = ( ( Fibci ‘ ( 1 − 1 ) ) + ( Fibci ‘ 1 ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( Fibci ‘ ( 1 + 1 ) ) = ( ( Fibci ‘ ( 1 − 1 ) ) + ( Fibci ‘ 1 ) ) |
6 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
7 |
6
|
fveq2i |
⊢ ( Fibci ‘ ( 1 − 1 ) ) = ( Fibci ‘ 0 ) |
8 |
|
fib0 |
⊢ ( Fibci ‘ 0 ) = 0 |
9 |
7 8
|
eqtri |
⊢ ( Fibci ‘ ( 1 − 1 ) ) = 0 |
10 |
|
fib1 |
⊢ ( Fibci ‘ 1 ) = 1 |
11 |
9 10
|
oveq12i |
⊢ ( ( Fibci ‘ ( 1 − 1 ) ) + ( Fibci ‘ 1 ) ) = ( 0 + 1 ) |
12 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
13 |
5 11 12
|
3eqtri |
⊢ ( Fibci ‘ ( 1 + 1 ) ) = 1 |
14 |
2 13
|
eqtr3i |
⊢ ( Fibci ‘ 2 ) = 1 |