Metamath Proof Explorer


Theorem fib2

Description: Value of the Fibonacci sequence at index 2. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib2 ( Fibci ‘ 2 ) = 1

Proof

Step Hyp Ref Expression
1 1p1e2 ( 1 + 1 ) = 2
2 1 fveq2i ( Fibci ‘ ( 1 + 1 ) ) = ( Fibci ‘ 2 )
3 1nn 1 ∈ ℕ
4 fibp1 ( 1 ∈ ℕ → ( Fibci ‘ ( 1 + 1 ) ) = ( ( Fibci ‘ ( 1 − 1 ) ) + ( Fibci ‘ 1 ) ) )
5 3 4 ax-mp ( Fibci ‘ ( 1 + 1 ) ) = ( ( Fibci ‘ ( 1 − 1 ) ) + ( Fibci ‘ 1 ) )
6 1m1e0 ( 1 − 1 ) = 0
7 6 fveq2i ( Fibci ‘ ( 1 − 1 ) ) = ( Fibci ‘ 0 )
8 fib0 ( Fibci ‘ 0 ) = 0
9 7 8 eqtri ( Fibci ‘ ( 1 − 1 ) ) = 0
10 fib1 ( Fibci ‘ 1 ) = 1
11 9 10 oveq12i ( ( Fibci ‘ ( 1 − 1 ) ) + ( Fibci ‘ 1 ) ) = ( 0 + 1 )
12 0p1e1 ( 0 + 1 ) = 1
13 5 11 12 3eqtri ( Fibci ‘ ( 1 + 1 ) ) = 1
14 2 13 eqtr3i ( Fibci ‘ 2 ) = 1