| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 2 |
1
|
fveq2i |
⊢ ( Fibci ‘ ( 2 + 1 ) ) = ( Fibci ‘ 3 ) |
| 3 |
|
2nn |
⊢ 2 ∈ ℕ |
| 4 |
|
fibp1 |
⊢ ( 2 ∈ ℕ → ( Fibci ‘ ( 2 + 1 ) ) = ( ( Fibci ‘ ( 2 − 1 ) ) + ( Fibci ‘ 2 ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( Fibci ‘ ( 2 + 1 ) ) = ( ( Fibci ‘ ( 2 − 1 ) ) + ( Fibci ‘ 2 ) ) |
| 6 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 7 |
6
|
fveq2i |
⊢ ( Fibci ‘ ( 2 − 1 ) ) = ( Fibci ‘ 1 ) |
| 8 |
|
fib1 |
⊢ ( Fibci ‘ 1 ) = 1 |
| 9 |
7 8
|
eqtri |
⊢ ( Fibci ‘ ( 2 − 1 ) ) = 1 |
| 10 |
|
fib2 |
⊢ ( Fibci ‘ 2 ) = 1 |
| 11 |
9 10
|
oveq12i |
⊢ ( ( Fibci ‘ ( 2 − 1 ) ) + ( Fibci ‘ 2 ) ) = ( 1 + 1 ) |
| 12 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 13 |
5 11 12
|
3eqtri |
⊢ ( Fibci ‘ ( 2 + 1 ) ) = 2 |
| 14 |
2 13
|
eqtr3i |
⊢ ( Fibci ‘ 3 ) = 2 |