Metamath Proof Explorer


Theorem fib3

Description: Value of the Fibonacci sequence at index 3. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib3 ( Fibci ‘ 3 ) = 2

Proof

Step Hyp Ref Expression
1 2p1e3 ( 2 + 1 ) = 3
2 1 fveq2i ( Fibci ‘ ( 2 + 1 ) ) = ( Fibci ‘ 3 )
3 2nn 2 ∈ ℕ
4 fibp1 ( 2 ∈ ℕ → ( Fibci ‘ ( 2 + 1 ) ) = ( ( Fibci ‘ ( 2 − 1 ) ) + ( Fibci ‘ 2 ) ) )
5 3 4 ax-mp ( Fibci ‘ ( 2 + 1 ) ) = ( ( Fibci ‘ ( 2 − 1 ) ) + ( Fibci ‘ 2 ) )
6 2m1e1 ( 2 − 1 ) = 1
7 6 fveq2i ( Fibci ‘ ( 2 − 1 ) ) = ( Fibci ‘ 1 )
8 fib1 ( Fibci ‘ 1 ) = 1
9 7 8 eqtri ( Fibci ‘ ( 2 − 1 ) ) = 1
10 fib2 ( Fibci ‘ 2 ) = 1
11 9 10 oveq12i ( ( Fibci ‘ ( 2 − 1 ) ) + ( Fibci ‘ 2 ) ) = ( 1 + 1 )
12 1p1e2 ( 1 + 1 ) = 2
13 5 11 12 3eqtri ( Fibci ‘ ( 2 + 1 ) ) = 2
14 2 13 eqtr3i ( Fibci ‘ 3 ) = 2