Metamath Proof Explorer


Theorem fib3

Description: Value of the Fibonacci sequence at index 3. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib3 Fibci 3 = 2

Proof

Step Hyp Ref Expression
1 2p1e3 2 + 1 = 3
2 1 fveq2i Fibci 2 + 1 = Fibci 3
3 2nn 2
4 fibp1 2 Fibci 2 + 1 = Fibci 2 1 + Fibci 2
5 3 4 ax-mp Fibci 2 + 1 = Fibci 2 1 + Fibci 2
6 2m1e1 2 1 = 1
7 6 fveq2i Fibci 2 1 = Fibci 1
8 fib1 Fibci 1 = 1
9 7 8 eqtri Fibci 2 1 = 1
10 fib2 Fibci 2 = 1
11 9 10 oveq12i Fibci 2 1 + Fibci 2 = 1 + 1
12 1p1e2 1 + 1 = 2
13 5 11 12 3eqtri Fibci 2 + 1 = 2
14 2 13 eqtr3i Fibci 3 = 2