Metamath Proof Explorer


Theorem fib3

Description: Value of the Fibonacci sequence at index 3. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib3 Fibci3=2

Proof

Step Hyp Ref Expression
1 2p1e3 2+1=3
2 1 fveq2i Fibci2+1=Fibci3
3 2nn 2
4 fibp1 2Fibci2+1=Fibci21+Fibci2
5 3 4 ax-mp Fibci2+1=Fibci21+Fibci2
6 2m1e1 21=1
7 6 fveq2i Fibci21=Fibci1
8 fib1 Fibci1=1
9 7 8 eqtri Fibci21=1
10 fib2 Fibci2=1
11 9 10 oveq12i Fibci21+Fibci2=1+1
12 1p1e2 1+1=2
13 5 11 12 3eqtri Fibci2+1=2
14 2 13 eqtr3i Fibci3=2