Metamath Proof Explorer


Theorem fib2

Description: Value of the Fibonacci sequence at index 2. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib2 Fibci 2 = 1

Proof

Step Hyp Ref Expression
1 1p1e2 1 + 1 = 2
2 1 fveq2i Fibci 1 + 1 = Fibci 2
3 1nn 1
4 fibp1 1 Fibci 1 + 1 = Fibci 1 1 + Fibci 1
5 3 4 ax-mp Fibci 1 + 1 = Fibci 1 1 + Fibci 1
6 1m1e0 1 1 = 0
7 6 fveq2i Fibci 1 1 = Fibci 0
8 fib0 Fibci 0 = 0
9 7 8 eqtri Fibci 1 1 = 0
10 fib1 Fibci 1 = 1
11 9 10 oveq12i Fibci 1 1 + Fibci 1 = 0 + 1
12 0p1e1 0 + 1 = 1
13 5 11 12 3eqtri Fibci 1 + 1 = 1
14 2 13 eqtr3i Fibci 2 = 1