| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 2 |
1
|
fveq2i |
|- ( Fibci ` ( 1 + 1 ) ) = ( Fibci ` 2 ) |
| 3 |
|
1nn |
|- 1 e. NN |
| 4 |
|
fibp1 |
|- ( 1 e. NN -> ( Fibci ` ( 1 + 1 ) ) = ( ( Fibci ` ( 1 - 1 ) ) + ( Fibci ` 1 ) ) ) |
| 5 |
3 4
|
ax-mp |
|- ( Fibci ` ( 1 + 1 ) ) = ( ( Fibci ` ( 1 - 1 ) ) + ( Fibci ` 1 ) ) |
| 6 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 7 |
6
|
fveq2i |
|- ( Fibci ` ( 1 - 1 ) ) = ( Fibci ` 0 ) |
| 8 |
|
fib0 |
|- ( Fibci ` 0 ) = 0 |
| 9 |
7 8
|
eqtri |
|- ( Fibci ` ( 1 - 1 ) ) = 0 |
| 10 |
|
fib1 |
|- ( Fibci ` 1 ) = 1 |
| 11 |
9 10
|
oveq12i |
|- ( ( Fibci ` ( 1 - 1 ) ) + ( Fibci ` 1 ) ) = ( 0 + 1 ) |
| 12 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 13 |
5 11 12
|
3eqtri |
|- ( Fibci ` ( 1 + 1 ) ) = 1 |
| 14 |
2 13
|
eqtr3i |
|- ( Fibci ` 2 ) = 1 |