| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fib |
|- Fibci = ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |
| 2 |
1
|
fveq1i |
|- ( Fibci ` ( N + 1 ) ) = ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) ` ( N + 1 ) ) |
| 3 |
2
|
a1i |
|- ( N e. NN -> ( Fibci ` ( N + 1 ) ) = ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) ` ( N + 1 ) ) ) |
| 4 |
|
nn0ex |
|- NN0 e. _V |
| 5 |
4
|
a1i |
|- ( N e. NN -> NN0 e. _V ) |
| 6 |
|
0nn0 |
|- 0 e. NN0 |
| 7 |
6
|
a1i |
|- ( N e. NN -> 0 e. NN0 ) |
| 8 |
|
1nn0 |
|- 1 e. NN0 |
| 9 |
8
|
a1i |
|- ( N e. NN -> 1 e. NN0 ) |
| 10 |
7 9
|
s2cld |
|- ( N e. NN -> <" 0 1 "> e. Word NN0 ) |
| 11 |
|
eqid |
|- ( Word NN0 i^i ( `' # " ( ZZ>= ` ( # ` <" 0 1 "> ) ) ) ) = ( Word NN0 i^i ( `' # " ( ZZ>= ` ( # ` <" 0 1 "> ) ) ) ) |
| 12 |
|
fiblem |
|- ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) : ( Word NN0 i^i ( `' # " ( ZZ>= ` ( # ` <" 0 1 "> ) ) ) ) --> NN0 |
| 13 |
12
|
a1i |
|- ( N e. NN -> ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) : ( Word NN0 i^i ( `' # " ( ZZ>= ` ( # ` <" 0 1 "> ) ) ) ) --> NN0 ) |
| 14 |
|
eluzp1p1 |
|- ( N e. ( ZZ>= ` 1 ) -> ( N + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 15 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 16 |
14 15
|
eleq2s |
|- ( N e. NN -> ( N + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 17 |
|
s2len |
|- ( # ` <" 0 1 "> ) = 2 |
| 18 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 19 |
17 18
|
eqtr4i |
|- ( # ` <" 0 1 "> ) = ( 1 + 1 ) |
| 20 |
19
|
fveq2i |
|- ( ZZ>= ` ( # ` <" 0 1 "> ) ) = ( ZZ>= ` ( 1 + 1 ) ) |
| 21 |
16 20
|
eleqtrrdi |
|- ( N e. NN -> ( N + 1 ) e. ( ZZ>= ` ( # ` <" 0 1 "> ) ) ) |
| 22 |
5 10 11 13 21
|
sseqp1 |
|- ( N e. NN -> ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) ` ( N + 1 ) ) = ( ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ` ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |` ( 0 ..^ ( N + 1 ) ) ) ) ) |
| 23 |
|
id |
|- ( w = t -> w = t ) |
| 24 |
|
fveq2 |
|- ( w = t -> ( # ` w ) = ( # ` t ) ) |
| 25 |
24
|
oveq1d |
|- ( w = t -> ( ( # ` w ) - 2 ) = ( ( # ` t ) - 2 ) ) |
| 26 |
23 25
|
fveq12d |
|- ( w = t -> ( w ` ( ( # ` w ) - 2 ) ) = ( t ` ( ( # ` t ) - 2 ) ) ) |
| 27 |
24
|
oveq1d |
|- ( w = t -> ( ( # ` w ) - 1 ) = ( ( # ` t ) - 1 ) ) |
| 28 |
23 27
|
fveq12d |
|- ( w = t -> ( w ` ( ( # ` w ) - 1 ) ) = ( t ` ( ( # ` t ) - 1 ) ) ) |
| 29 |
26 28
|
oveq12d |
|- ( w = t -> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) = ( ( t ` ( ( # ` t ) - 2 ) ) + ( t ` ( ( # ` t ) - 1 ) ) ) ) |
| 30 |
29
|
cbvmptv |
|- ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) = ( t e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( t ` ( ( # ` t ) - 2 ) ) + ( t ` ( ( # ` t ) - 1 ) ) ) ) |
| 31 |
30
|
a1i |
|- ( N e. NN -> ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) = ( t e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( t ` ( ( # ` t ) - 2 ) ) + ( t ` ( ( # ` t ) - 1 ) ) ) ) ) |
| 32 |
|
simpr |
|- ( ( N e. NN /\ t = ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |` ( 0 ..^ ( N + 1 ) ) ) ) -> t = ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |` ( 0 ..^ ( N + 1 ) ) ) ) |
| 33 |
1
|
a1i |
|- ( ( N e. NN /\ t = ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |` ( 0 ..^ ( N + 1 ) ) ) ) -> Fibci = ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) ) |
| 34 |
33
|
reseq1d |
|- ( ( N e. NN /\ t = ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) = ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |` ( 0 ..^ ( N + 1 ) ) ) ) |
| 35 |
32 34
|
eqtr4d |
|- ( ( N e. NN /\ t = ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |` ( 0 ..^ ( N + 1 ) ) ) ) -> t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) |
| 36 |
|
simpr |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) |
| 37 |
36
|
fveq2d |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( # ` t ) = ( # ` ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) ) |
| 38 |
5 10 11 13
|
sseqf |
|- ( N e. NN -> ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) : NN0 --> NN0 ) |
| 39 |
1
|
a1i |
|- ( N e. NN -> Fibci = ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) ) |
| 40 |
39
|
feq1d |
|- ( N e. NN -> ( Fibci : NN0 --> NN0 <-> ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) : NN0 --> NN0 ) ) |
| 41 |
38 40
|
mpbird |
|- ( N e. NN -> Fibci : NN0 --> NN0 ) |
| 42 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 43 |
42 9
|
nn0addcld |
|- ( N e. NN -> ( N + 1 ) e. NN0 ) |
| 44 |
5 41 43
|
subiwrdlen |
|- ( N e. NN -> ( # ` ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) = ( N + 1 ) ) |
| 45 |
44
|
adantr |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( # ` ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) = ( N + 1 ) ) |
| 46 |
37 45
|
eqtrd |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( # ` t ) = ( N + 1 ) ) |
| 47 |
46
|
oveq1d |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( ( # ` t ) - 2 ) = ( ( N + 1 ) - 2 ) ) |
| 48 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 49 |
|
1cnd |
|- ( N e. NN -> 1 e. CC ) |
| 50 |
|
2cnd |
|- ( N e. NN -> 2 e. CC ) |
| 51 |
48 49 50
|
addsubassd |
|- ( N e. NN -> ( ( N + 1 ) - 2 ) = ( N + ( 1 - 2 ) ) ) |
| 52 |
48 50 49
|
subsub2d |
|- ( N e. NN -> ( N - ( 2 - 1 ) ) = ( N + ( 1 - 2 ) ) ) |
| 53 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 54 |
53
|
oveq2i |
|- ( N - ( 2 - 1 ) ) = ( N - 1 ) |
| 55 |
54
|
a1i |
|- ( N e. NN -> ( N - ( 2 - 1 ) ) = ( N - 1 ) ) |
| 56 |
51 52 55
|
3eqtr2d |
|- ( N e. NN -> ( ( N + 1 ) - 2 ) = ( N - 1 ) ) |
| 57 |
56
|
adantr |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( ( N + 1 ) - 2 ) = ( N - 1 ) ) |
| 58 |
47 57
|
eqtrd |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( ( # ` t ) - 2 ) = ( N - 1 ) ) |
| 59 |
58
|
fveq2d |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( t ` ( ( # ` t ) - 2 ) ) = ( t ` ( N - 1 ) ) ) |
| 60 |
36
|
fveq1d |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( t ` ( N - 1 ) ) = ( ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ` ( N - 1 ) ) ) |
| 61 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 62 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
| 63 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 64 |
|
2re |
|- 2 e. RR |
| 65 |
64
|
a1i |
|- ( N e. NN -> 2 e. RR ) |
| 66 |
63 65
|
readdcld |
|- ( N e. NN -> ( N + 2 ) e. RR ) |
| 67 |
|
1red |
|- ( N e. NN -> 1 e. RR ) |
| 68 |
|
2rp |
|- 2 e. RR+ |
| 69 |
68
|
a1i |
|- ( N e. NN -> 2 e. RR+ ) |
| 70 |
63 69
|
ltaddrpd |
|- ( N e. NN -> N < ( N + 2 ) ) |
| 71 |
63 66 67 70
|
ltsub1dd |
|- ( N e. NN -> ( N - 1 ) < ( ( N + 2 ) - 1 ) ) |
| 72 |
48 50 49
|
addsubassd |
|- ( N e. NN -> ( ( N + 2 ) - 1 ) = ( N + ( 2 - 1 ) ) ) |
| 73 |
53
|
oveq2i |
|- ( N + ( 2 - 1 ) ) = ( N + 1 ) |
| 74 |
72 73
|
eqtrdi |
|- ( N e. NN -> ( ( N + 2 ) - 1 ) = ( N + 1 ) ) |
| 75 |
71 74
|
breqtrd |
|- ( N e. NN -> ( N - 1 ) < ( N + 1 ) ) |
| 76 |
|
elfzo0 |
|- ( ( N - 1 ) e. ( 0 ..^ ( N + 1 ) ) <-> ( ( N - 1 ) e. NN0 /\ ( N + 1 ) e. NN /\ ( N - 1 ) < ( N + 1 ) ) ) |
| 77 |
61 62 75 76
|
syl3anbrc |
|- ( N e. NN -> ( N - 1 ) e. ( 0 ..^ ( N + 1 ) ) ) |
| 78 |
77
|
adantr |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( N - 1 ) e. ( 0 ..^ ( N + 1 ) ) ) |
| 79 |
|
fvres |
|- ( ( N - 1 ) e. ( 0 ..^ ( N + 1 ) ) -> ( ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ` ( N - 1 ) ) = ( Fibci ` ( N - 1 ) ) ) |
| 80 |
78 79
|
syl |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ` ( N - 1 ) ) = ( Fibci ` ( N - 1 ) ) ) |
| 81 |
59 60 80
|
3eqtrd |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( t ` ( ( # ` t ) - 2 ) ) = ( Fibci ` ( N - 1 ) ) ) |
| 82 |
46
|
oveq1d |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( ( # ` t ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
| 83 |
|
simpl |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> N e. NN ) |
| 84 |
83
|
nncnd |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> N e. CC ) |
| 85 |
|
1cnd |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> 1 e. CC ) |
| 86 |
84 85
|
pncand |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( ( N + 1 ) - 1 ) = N ) |
| 87 |
82 86
|
eqtrd |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( ( # ` t ) - 1 ) = N ) |
| 88 |
87
|
fveq2d |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( t ` ( ( # ` t ) - 1 ) ) = ( t ` N ) ) |
| 89 |
36
|
fveq1d |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( t ` N ) = ( ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ` N ) ) |
| 90 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
| 91 |
42 90
|
sylib |
|- ( N e. NN -> N e. ( 0 ... N ) ) |
| 92 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 93 |
|
fzval3 |
|- ( N e. ZZ -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) |
| 94 |
92 93
|
syl |
|- ( N e. NN -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) |
| 95 |
91 94
|
eleqtrd |
|- ( N e. NN -> N e. ( 0 ..^ ( N + 1 ) ) ) |
| 96 |
95
|
adantr |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> N e. ( 0 ..^ ( N + 1 ) ) ) |
| 97 |
|
fvres |
|- ( N e. ( 0 ..^ ( N + 1 ) ) -> ( ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ` N ) = ( Fibci ` N ) ) |
| 98 |
96 97
|
syl |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ` N ) = ( Fibci ` N ) ) |
| 99 |
88 89 98
|
3eqtrd |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( t ` ( ( # ` t ) - 1 ) ) = ( Fibci ` N ) ) |
| 100 |
81 99
|
oveq12d |
|- ( ( N e. NN /\ t = ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( ( t ` ( ( # ` t ) - 2 ) ) + ( t ` ( ( # ` t ) - 1 ) ) ) = ( ( Fibci ` ( N - 1 ) ) + ( Fibci ` N ) ) ) |
| 101 |
35 100
|
syldan |
|- ( ( N e. NN /\ t = ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |` ( 0 ..^ ( N + 1 ) ) ) ) -> ( ( t ` ( ( # ` t ) - 2 ) ) + ( t ` ( ( # ` t ) - 1 ) ) ) = ( ( Fibci ` ( N - 1 ) ) + ( Fibci ` N ) ) ) |
| 102 |
39
|
reseq1d |
|- ( N e. NN -> ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) = ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |` ( 0 ..^ ( N + 1 ) ) ) ) |
| 103 |
5 41 43
|
subiwrd |
|- ( N e. NN -> ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) e. Word NN0 ) |
| 104 |
|
ovex |
|- ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) e. _V |
| 105 |
1 104
|
eqeltri |
|- Fibci e. _V |
| 106 |
105
|
resex |
|- ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) e. _V |
| 107 |
106
|
a1i |
|- ( N e. NN -> ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) e. _V ) |
| 108 |
18
|
fveq2i |
|- ( ZZ>= ` ( 1 + 1 ) ) = ( ZZ>= ` 2 ) |
| 109 |
16 108
|
eleqtrdi |
|- ( N e. NN -> ( N + 1 ) e. ( ZZ>= ` 2 ) ) |
| 110 |
44 109
|
eqeltrd |
|- ( N e. NN -> ( # ` ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) e. ( ZZ>= ` 2 ) ) |
| 111 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
| 112 |
|
ffn |
|- ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) |
| 113 |
|
elpreima |
|- ( # Fn _V -> ( ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) e. ( `' # " ( ZZ>= ` 2 ) ) <-> ( ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) e. _V /\ ( # ` ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) e. ( ZZ>= ` 2 ) ) ) ) |
| 114 |
111 112 113
|
mp2b |
|- ( ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) e. ( `' # " ( ZZ>= ` 2 ) ) <-> ( ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) e. _V /\ ( # ` ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) ) e. ( ZZ>= ` 2 ) ) ) |
| 115 |
107 110 114
|
sylanbrc |
|- ( N e. NN -> ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) e. ( `' # " ( ZZ>= ` 2 ) ) ) |
| 116 |
103 115
|
elind |
|- ( N e. NN -> ( Fibci |` ( 0 ..^ ( N + 1 ) ) ) e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) ) |
| 117 |
102 116
|
eqeltrrd |
|- ( N e. NN -> ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |` ( 0 ..^ ( N + 1 ) ) ) e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) ) |
| 118 |
|
ovex |
|- ( ( Fibci ` ( N - 1 ) ) + ( Fibci ` N ) ) e. _V |
| 119 |
118
|
a1i |
|- ( N e. NN -> ( ( Fibci ` ( N - 1 ) ) + ( Fibci ` N ) ) e. _V ) |
| 120 |
31 101 117 119
|
fvmptd |
|- ( N e. NN -> ( ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ` ( ( <" 0 1 "> seqstr ( w e. ( Word NN0 i^i ( `' # " ( ZZ>= ` 2 ) ) ) |-> ( ( w ` ( ( # ` w ) - 2 ) ) + ( w ` ( ( # ` w ) - 1 ) ) ) ) ) |` ( 0 ..^ ( N + 1 ) ) ) ) = ( ( Fibci ` ( N - 1 ) ) + ( Fibci ` N ) ) ) |
| 121 |
3 22 120
|
3eqtrd |
|- ( N e. NN -> ( Fibci ` ( N + 1 ) ) = ( ( Fibci ` ( N - 1 ) ) + ( Fibci ` N ) ) ) |