Step |
Hyp |
Ref |
Expression |
1 |
|
df-fib |
⊢ Fibci = ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) |
2 |
1
|
fveq1i |
⊢ ( Fibci ‘ 1 ) = ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ‘ 1 ) |
3 |
|
nn0ex |
⊢ ℕ0 ∈ V |
4 |
3
|
a1i |
⊢ ( ⊤ → ℕ0 ∈ V ) |
5 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
6 |
5
|
a1i |
⊢ ( ⊤ → 0 ∈ ℕ0 ) |
7 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
8 |
7
|
a1i |
⊢ ( ⊤ → 1 ∈ ℕ0 ) |
9 |
6 8
|
s2cld |
⊢ ( ⊤ → 〈“ 0 1 ”〉 ∈ Word ℕ0 ) |
10 |
|
eqid |
⊢ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) = ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) |
11 |
|
fiblem |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) : ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) ⟶ ℕ0 |
12 |
11
|
a1i |
⊢ ( ⊤ → ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) : ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) ⟶ ℕ0 ) |
13 |
|
2nn |
⊢ 2 ∈ ℕ |
14 |
|
1lt2 |
⊢ 1 < 2 |
15 |
|
elfzo0 |
⊢ ( 1 ∈ ( 0 ..^ 2 ) ↔ ( 1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2 ) ) |
16 |
7 13 14 15
|
mpbir3an |
⊢ 1 ∈ ( 0 ..^ 2 ) |
17 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 0 1 ”〉 ) = 2 |
18 |
17
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) = ( 0 ..^ 2 ) |
19 |
16 18
|
eleqtrri |
⊢ 1 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) |
20 |
19
|
a1i |
⊢ ( ⊤ → 1 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) |
21 |
4 9 10 12 20
|
sseqfv1 |
⊢ ( ⊤ → ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ‘ 1 ) = ( 〈“ 0 1 ”〉 ‘ 1 ) ) |
22 |
21
|
mptru |
⊢ ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ‘ 1 ) = ( 〈“ 0 1 ”〉 ‘ 1 ) |
23 |
|
s2fv1 |
⊢ ( 1 ∈ ℕ0 → ( 〈“ 0 1 ”〉 ‘ 1 ) = 1 ) |
24 |
7 23
|
ax-mp |
⊢ ( 〈“ 0 1 ”〉 ‘ 1 ) = 1 |
25 |
2 22 24
|
3eqtri |
⊢ ( Fibci ‘ 1 ) = 1 |