| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fib |
⊢ Fibci = ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) |
| 2 |
1
|
fveq1i |
⊢ ( Fibci ‘ 0 ) = ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ‘ 0 ) |
| 3 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 4 |
3
|
a1i |
⊢ ( ⊤ → ℕ0 ∈ V ) |
| 5 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 6 |
5
|
a1i |
⊢ ( ⊤ → 0 ∈ ℕ0 ) |
| 7 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 8 |
7
|
a1i |
⊢ ( ⊤ → 1 ∈ ℕ0 ) |
| 9 |
6 8
|
s2cld |
⊢ ( ⊤ → 〈“ 0 1 ”〉 ∈ Word ℕ0 ) |
| 10 |
|
eqid |
⊢ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) = ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) |
| 11 |
|
fiblem |
⊢ ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) : ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) ⟶ ℕ0 |
| 12 |
11
|
a1i |
⊢ ( ⊤ → ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) : ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) ) ⟶ ℕ0 ) |
| 13 |
|
2nn |
⊢ 2 ∈ ℕ |
| 14 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 2 ) ↔ 2 ∈ ℕ ) |
| 15 |
13 14
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 2 ) |
| 16 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 0 1 ”〉 ) = 2 |
| 17 |
16
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) = ( 0 ..^ 2 ) |
| 18 |
15 17
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) |
| 19 |
18
|
a1i |
⊢ ( ⊤ → 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 0 1 ”〉 ) ) ) |
| 20 |
4 9 10 12 19
|
sseqfv1 |
⊢ ( ⊤ → ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ‘ 0 ) = ( 〈“ 0 1 ”〉 ‘ 0 ) ) |
| 21 |
20
|
mptru |
⊢ ( ( 〈“ 0 1 ”〉 seqstr ( 𝑤 ∈ ( Word ℕ0 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ 2 ) ) ) ↦ ( ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 2 ) ) + ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) ) ) ‘ 0 ) = ( 〈“ 0 1 ”〉 ‘ 0 ) |
| 22 |
|
s2fv0 |
⊢ ( 0 ∈ ℕ0 → ( 〈“ 0 1 ”〉 ‘ 0 ) = 0 ) |
| 23 |
5 22
|
ax-mp |
⊢ ( 〈“ 0 1 ”〉 ‘ 0 ) = 0 |
| 24 |
2 21 23
|
3eqtri |
⊢ ( Fibci ‘ 0 ) = 0 |