| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgfo |
|- GF_oo |
| 1 |
|
vp |
|- p |
| 2 |
|
cprime |
|- Prime |
| 3 |
|
czn |
|- Z/nZ |
| 4 |
1
|
cv |
|- p |
| 5 |
4 3
|
cfv |
|- ( Z/nZ ` p ) |
| 6 |
|
vr |
|- r |
| 7 |
6
|
cv |
|- r |
| 8 |
|
cpsl |
|- polySplitLim |
| 9 |
|
vn |
|- n |
| 10 |
|
cn |
|- NN |
| 11 |
|
cpl1 |
|- Poly1 |
| 12 |
7 11
|
cfv |
|- ( Poly1 ` r ) |
| 13 |
|
vs |
|- s |
| 14 |
|
cv1 |
|- var1 |
| 15 |
7 14
|
cfv |
|- ( var1 ` r ) |
| 16 |
|
vx |
|- x |
| 17 |
|
cexp |
|- ^ |
| 18 |
9
|
cv |
|- n |
| 19 |
4 18 17
|
co |
|- ( p ^ n ) |
| 20 |
|
cmg |
|- .g |
| 21 |
|
cmgp |
|- mulGrp |
| 22 |
13
|
cv |
|- s |
| 23 |
22 21
|
cfv |
|- ( mulGrp ` s ) |
| 24 |
23 20
|
cfv |
|- ( .g ` ( mulGrp ` s ) ) |
| 25 |
16
|
cv |
|- x |
| 26 |
19 25 24
|
co |
|- ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) |
| 27 |
|
csg |
|- -g |
| 28 |
22 27
|
cfv |
|- ( -g ` s ) |
| 29 |
26 25 28
|
co |
|- ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) |
| 30 |
16 15 29
|
csb |
|- [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) |
| 31 |
13 12 30
|
csb |
|- [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) |
| 32 |
31
|
csn |
|- { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) } |
| 33 |
9 10 32
|
cmpt |
|- ( n e. NN |-> { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) } ) |
| 34 |
7 33 8
|
co |
|- ( r polySplitLim ( n e. NN |-> { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) } ) ) |
| 35 |
6 5 34
|
csb |
|- [_ ( Z/nZ ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) } ) ) |
| 36 |
1 2 35
|
cmpt |
|- ( p e. Prime |-> [_ ( Z/nZ ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) } ) ) ) |
| 37 |
0 36
|
wceq |
|- GF_oo = ( p e. Prime |-> [_ ( Z/nZ ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) } ) ) ) |