Metamath Proof Explorer


Definition df-gfoo

Description: Define the Galois field of order p ^ +oo , as a direct limit of the Galois finite fields. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-gfoo
|- GF_oo = ( p e. Prime |-> [_ ( Z/nZ ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgfo
 |-  GF_oo
1 vp
 |-  p
2 cprime
 |-  Prime
3 czn
 |-  Z/nZ
4 1 cv
 |-  p
5 4 3 cfv
 |-  ( Z/nZ ` p )
6 vr
 |-  r
7 6 cv
 |-  r
8 cpsl
 |-  polySplitLim
9 vn
 |-  n
10 cn
 |-  NN
11 cpl1
 |-  Poly1
12 7 11 cfv
 |-  ( Poly1 ` r )
13 vs
 |-  s
14 cv1
 |-  var1
15 7 14 cfv
 |-  ( var1 ` r )
16 vx
 |-  x
17 cexp
 |-  ^
18 9 cv
 |-  n
19 4 18 17 co
 |-  ( p ^ n )
20 cmg
 |-  .g
21 cmgp
 |-  mulGrp
22 13 cv
 |-  s
23 22 21 cfv
 |-  ( mulGrp ` s )
24 23 20 cfv
 |-  ( .g ` ( mulGrp ` s ) )
25 16 cv
 |-  x
26 19 25 24 co
 |-  ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x )
27 csg
 |-  -g
28 22 27 cfv
 |-  ( -g ` s )
29 26 25 28 co
 |-  ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x )
30 16 15 29 csb
 |-  [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x )
31 13 12 30 csb
 |-  [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x )
32 31 csn
 |-  { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) }
33 9 10 32 cmpt
 |-  ( n e. NN |-> { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) } )
34 7 33 8 co
 |-  ( r polySplitLim ( n e. NN |-> { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) } ) )
35 6 5 34 csb
 |-  [_ ( Z/nZ ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) } ) )
36 1 2 35 cmpt
 |-  ( p e. Prime |-> [_ ( Z/nZ ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) } ) ) )
37 0 36 wceq
 |-  GF_oo = ( p e. Prime |-> [_ ( Z/nZ ` p ) / r ]_ ( r polySplitLim ( n e. NN |-> { [_ ( Poly1 ` r ) / s ]_ [_ ( var1 ` r ) / x ]_ ( ( ( p ^ n ) ( .g ` ( mulGrp ` s ) ) x ) ( -g ` s ) x ) } ) ) )