Metamath Proof Explorer


Definition df-gfoo

Description: Define the Galois field of order p ^ +oo , as a direct limit of the Galois finite fields. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-gfoo GF = p /p / r r polySplitLim n Poly 1 r / s var 1 r / x p n mulGrp s x - s x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgfo class GF
1 vp setvar p
2 cprime class
3 czn class ℤ/nℤ
4 1 cv setvar p
5 4 3 cfv class /p
6 vr setvar r
7 6 cv setvar r
8 cpsl class polySplitLim
9 vn setvar n
10 cn class
11 cpl1 class Poly 1
12 7 11 cfv class Poly 1 r
13 vs setvar s
14 cv1 class var 1
15 7 14 cfv class var 1 r
16 vx setvar x
17 cexp class ^
18 9 cv setvar n
19 4 18 17 co class p n
20 cmg class 𝑔
21 cmgp class mulGrp
22 13 cv setvar s
23 22 21 cfv class mulGrp s
24 23 20 cfv class mulGrp s
25 16 cv setvar x
26 19 25 24 co class p n mulGrp s x
27 csg class - 𝑔
28 22 27 cfv class - s
29 26 25 28 co class p n mulGrp s x - s x
30 16 15 29 csb class var 1 r / x p n mulGrp s x - s x
31 13 12 30 csb class Poly 1 r / s var 1 r / x p n mulGrp s x - s x
32 31 csn class Poly 1 r / s var 1 r / x p n mulGrp s x - s x
33 9 10 32 cmpt class n Poly 1 r / s var 1 r / x p n mulGrp s x - s x
34 7 33 8 co class r polySplitLim n Poly 1 r / s var 1 r / x p n mulGrp s x - s x
35 6 5 34 csb class /p / r r polySplitLim n Poly 1 r / s var 1 r / x p n mulGrp s x - s x
36 1 2 35 cmpt class p /p / r r polySplitLim n Poly 1 r / s var 1 r / x p n mulGrp s x - s x
37 0 36 wceq wff GF = p /p / r r polySplitLim n Poly 1 r / s var 1 r / x p n mulGrp s x - s x