Metamath Proof Explorer


Definition df-gfoo

Description: Define the Galois field of order p ^ +oo , as a direct limit of the Galois finite fields. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-gfoo GF=p/p/rrpolySplitLimnPoly1r/svar1r/xpnmulGrpsx-sx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgfo classGF
1 vp setvarp
2 cprime class
3 czn classℤ/nℤ
4 1 cv setvarp
5 4 3 cfv class/p
6 vr setvarr
7 6 cv setvarr
8 cpsl classpolySplitLim
9 vn setvarn
10 cn class
11 cpl1 classPoly1
12 7 11 cfv classPoly1r
13 vs setvars
14 cv1 classvar1
15 7 14 cfv classvar1r
16 vx setvarx
17 cexp class^
18 9 cv setvarn
19 4 18 17 co classpn
20 cmg class𝑔
21 cmgp classmulGrp
22 13 cv setvars
23 22 21 cfv classmulGrps
24 23 20 cfv classmulGrps
25 16 cv setvarx
26 19 25 24 co classpnmulGrpsx
27 csg class-𝑔
28 22 27 cfv class-s
29 26 25 28 co classpnmulGrpsx-sx
30 16 15 29 csb classvar1r/xpnmulGrpsx-sx
31 13 12 30 csb classPoly1r/svar1r/xpnmulGrpsx-sx
32 31 csn classPoly1r/svar1r/xpnmulGrpsx-sx
33 9 10 32 cmpt classnPoly1r/svar1r/xpnmulGrpsx-sx
34 7 33 8 co classrpolySplitLimnPoly1r/svar1r/xpnmulGrpsx-sx
35 6 5 34 csb class/p/rrpolySplitLimnPoly1r/svar1r/xpnmulGrpsx-sx
36 1 2 35 cmpt classp/p/rrpolySplitLimnPoly1r/svar1r/xpnmulGrpsx-sx
37 0 36 wceq wffGF=p/p/rrpolySplitLimnPoly1r/svar1r/xpnmulGrpsx-sx