Step |
Hyp |
Ref |
Expression |
0 |
|
cgfo |
⊢ GF∞ |
1 |
|
vp |
⊢ 𝑝 |
2 |
|
cprime |
⊢ ℙ |
3 |
|
czn |
⊢ ℤ/nℤ |
4 |
1
|
cv |
⊢ 𝑝 |
5 |
4 3
|
cfv |
⊢ ( ℤ/nℤ ‘ 𝑝 ) |
6 |
|
vr |
⊢ 𝑟 |
7 |
6
|
cv |
⊢ 𝑟 |
8 |
|
cpsl |
⊢ polySplitLim |
9 |
|
vn |
⊢ 𝑛 |
10 |
|
cn |
⊢ ℕ |
11 |
|
cpl1 |
⊢ Poly1 |
12 |
7 11
|
cfv |
⊢ ( Poly1 ‘ 𝑟 ) |
13 |
|
vs |
⊢ 𝑠 |
14 |
|
cv1 |
⊢ var1 |
15 |
7 14
|
cfv |
⊢ ( var1 ‘ 𝑟 ) |
16 |
|
vx |
⊢ 𝑥 |
17 |
|
cexp |
⊢ ↑ |
18 |
9
|
cv |
⊢ 𝑛 |
19 |
4 18 17
|
co |
⊢ ( 𝑝 ↑ 𝑛 ) |
20 |
|
cmg |
⊢ .g |
21 |
|
cmgp |
⊢ mulGrp |
22 |
13
|
cv |
⊢ 𝑠 |
23 |
22 21
|
cfv |
⊢ ( mulGrp ‘ 𝑠 ) |
24 |
23 20
|
cfv |
⊢ ( .g ‘ ( mulGrp ‘ 𝑠 ) ) |
25 |
16
|
cv |
⊢ 𝑥 |
26 |
19 25 24
|
co |
⊢ ( ( 𝑝 ↑ 𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) |
27 |
|
csg |
⊢ -g |
28 |
22 27
|
cfv |
⊢ ( -g ‘ 𝑠 ) |
29 |
26 25 28
|
co |
⊢ ( ( ( 𝑝 ↑ 𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g ‘ 𝑠 ) 𝑥 ) |
30 |
16 15 29
|
csb |
⊢ ⦋ ( var1 ‘ 𝑟 ) / 𝑥 ⦌ ( ( ( 𝑝 ↑ 𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g ‘ 𝑠 ) 𝑥 ) |
31 |
13 12 30
|
csb |
⊢ ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( var1 ‘ 𝑟 ) / 𝑥 ⦌ ( ( ( 𝑝 ↑ 𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g ‘ 𝑠 ) 𝑥 ) |
32 |
31
|
csn |
⊢ { ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( var1 ‘ 𝑟 ) / 𝑥 ⦌ ( ( ( 𝑝 ↑ 𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g ‘ 𝑠 ) 𝑥 ) } |
33 |
9 10 32
|
cmpt |
⊢ ( 𝑛 ∈ ℕ ↦ { ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( var1 ‘ 𝑟 ) / 𝑥 ⦌ ( ( ( 𝑝 ↑ 𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g ‘ 𝑠 ) 𝑥 ) } ) |
34 |
7 33 8
|
co |
⊢ ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( var1 ‘ 𝑟 ) / 𝑥 ⦌ ( ( ( 𝑝 ↑ 𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g ‘ 𝑠 ) 𝑥 ) } ) ) |
35 |
6 5 34
|
csb |
⊢ ⦋ ( ℤ/nℤ ‘ 𝑝 ) / 𝑟 ⦌ ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( var1 ‘ 𝑟 ) / 𝑥 ⦌ ( ( ( 𝑝 ↑ 𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g ‘ 𝑠 ) 𝑥 ) } ) ) |
36 |
1 2 35
|
cmpt |
⊢ ( 𝑝 ∈ ℙ ↦ ⦋ ( ℤ/nℤ ‘ 𝑝 ) / 𝑟 ⦌ ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( var1 ‘ 𝑟 ) / 𝑥 ⦌ ( ( ( 𝑝 ↑ 𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g ‘ 𝑠 ) 𝑥 ) } ) ) ) |
37 |
0 36
|
wceq |
⊢ GF∞ = ( 𝑝 ∈ ℙ ↦ ⦋ ( ℤ/nℤ ‘ 𝑝 ) / 𝑟 ⦌ ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { ⦋ ( Poly1 ‘ 𝑟 ) / 𝑠 ⦌ ⦋ ( var1 ‘ 𝑟 ) / 𝑥 ⦌ ( ( ( 𝑝 ↑ 𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g ‘ 𝑠 ) 𝑥 ) } ) ) ) |