Metamath Proof Explorer


Definition df-gfoo

Description: Define the Galois field of order p ^ +oo , as a direct limit of the Galois finite fields. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-gfoo GF = ( 𝑝 ∈ ℙ ↦ ( ℤ/nℤ ‘ 𝑝 ) / 𝑟 ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { ( Poly1𝑟 ) / 𝑠 ( var1𝑟 ) / 𝑥 ( ( ( 𝑝𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g𝑠 ) 𝑥 ) } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgfo GF
1 vp 𝑝
2 cprime
3 czn ℤ/n
4 1 cv 𝑝
5 4 3 cfv ( ℤ/nℤ ‘ 𝑝 )
6 vr 𝑟
7 6 cv 𝑟
8 cpsl polySplitLim
9 vn 𝑛
10 cn
11 cpl1 Poly1
12 7 11 cfv ( Poly1𝑟 )
13 vs 𝑠
14 cv1 var1
15 7 14 cfv ( var1𝑟 )
16 vx 𝑥
17 cexp
18 9 cv 𝑛
19 4 18 17 co ( 𝑝𝑛 )
20 cmg .g
21 cmgp mulGrp
22 13 cv 𝑠
23 22 21 cfv ( mulGrp ‘ 𝑠 )
24 23 20 cfv ( .g ‘ ( mulGrp ‘ 𝑠 ) )
25 16 cv 𝑥
26 19 25 24 co ( ( 𝑝𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 )
27 csg -g
28 22 27 cfv ( -g𝑠 )
29 26 25 28 co ( ( ( 𝑝𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g𝑠 ) 𝑥 )
30 16 15 29 csb ( var1𝑟 ) / 𝑥 ( ( ( 𝑝𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g𝑠 ) 𝑥 )
31 13 12 30 csb ( Poly1𝑟 ) / 𝑠 ( var1𝑟 ) / 𝑥 ( ( ( 𝑝𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g𝑠 ) 𝑥 )
32 31 csn { ( Poly1𝑟 ) / 𝑠 ( var1𝑟 ) / 𝑥 ( ( ( 𝑝𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g𝑠 ) 𝑥 ) }
33 9 10 32 cmpt ( 𝑛 ∈ ℕ ↦ { ( Poly1𝑟 ) / 𝑠 ( var1𝑟 ) / 𝑥 ( ( ( 𝑝𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g𝑠 ) 𝑥 ) } )
34 7 33 8 co ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { ( Poly1𝑟 ) / 𝑠 ( var1𝑟 ) / 𝑥 ( ( ( 𝑝𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g𝑠 ) 𝑥 ) } ) )
35 6 5 34 csb ( ℤ/nℤ ‘ 𝑝 ) / 𝑟 ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { ( Poly1𝑟 ) / 𝑠 ( var1𝑟 ) / 𝑥 ( ( ( 𝑝𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g𝑠 ) 𝑥 ) } ) )
36 1 2 35 cmpt ( 𝑝 ∈ ℙ ↦ ( ℤ/nℤ ‘ 𝑝 ) / 𝑟 ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { ( Poly1𝑟 ) / 𝑠 ( var1𝑟 ) / 𝑥 ( ( ( 𝑝𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g𝑠 ) 𝑥 ) } ) ) )
37 0 36 wceq GF = ( 𝑝 ∈ ℙ ↦ ( ℤ/nℤ ‘ 𝑝 ) / 𝑟 ( 𝑟 polySplitLim ( 𝑛 ∈ ℕ ↦ { ( Poly1𝑟 ) / 𝑠 ( var1𝑟 ) / 𝑥 ( ( ( 𝑝𝑛 ) ( .g ‘ ( mulGrp ‘ 𝑠 ) ) 𝑥 ) ( -g𝑠 ) 𝑥 ) } ) ) )