Step |
Hyp |
Ref |
Expression |
0 |
|
ccauold |
|- Cauchy |
1 |
|
vf |
|- f |
2 |
|
chba |
|- ~H |
3 |
|
cmap |
|- ^m |
4 |
|
cn |
|- NN |
5 |
2 4 3
|
co |
|- ( ~H ^m NN ) |
6 |
|
vx |
|- x |
7 |
|
crp |
|- RR+ |
8 |
|
vy |
|- y |
9 |
|
vz |
|- z |
10 |
|
cuz |
|- ZZ>= |
11 |
8
|
cv |
|- y |
12 |
11 10
|
cfv |
|- ( ZZ>= ` y ) |
13 |
|
cno |
|- normh |
14 |
1
|
cv |
|- f |
15 |
11 14
|
cfv |
|- ( f ` y ) |
16 |
|
cmv |
|- -h |
17 |
9
|
cv |
|- z |
18 |
17 14
|
cfv |
|- ( f ` z ) |
19 |
15 18 16
|
co |
|- ( ( f ` y ) -h ( f ` z ) ) |
20 |
19 13
|
cfv |
|- ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) |
21 |
|
clt |
|- < |
22 |
6
|
cv |
|- x |
23 |
20 22 21
|
wbr |
|- ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x |
24 |
23 9 12
|
wral |
|- A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x |
25 |
24 8 4
|
wrex |
|- E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x |
26 |
25 6 7
|
wral |
|- A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x |
27 |
26 1 5
|
crab |
|- { f e. ( ~H ^m NN ) | A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x } |
28 |
0 27
|
wceq |
|- Cauchy = { f e. ( ~H ^m NN ) | A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` y ) -h ( f ` z ) ) ) < x } |