Metamath Proof Explorer


Definition df-hcau

Description: Define the set of Cauchy sequences on a Hilbert space. See hcau for its membership relation. Note that f : NN --> ~H is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of Cauchy sequence in Beran p. 96. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)

Ref Expression
Assertion df-hcau Cauchy=f|x+yzynormfy-fz<x

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccauold classCauchy
1 vf setvarf
2 chba class
3 cmap class𝑚
4 cn class
5 2 4 3 co class
6 vx setvarx
7 crp class+
8 vy setvary
9 vz setvarz
10 cuz class
11 8 cv setvary
12 11 10 cfv classy
13 cno classnorm
14 1 cv setvarf
15 11 14 cfv classfy
16 cmv class-
17 9 cv setvarz
18 17 14 cfv classfz
19 15 18 16 co classfy-fz
20 19 13 cfv classnormfy-fz
21 clt class<
22 6 cv setvarx
23 20 22 21 wbr wffnormfy-fz<x
24 23 9 12 wral wffzynormfy-fz<x
25 24 8 4 wrex wffyzynormfy-fz<x
26 25 6 7 wral wffx+yzynormfy-fz<x
27 26 1 5 crab classf|x+yzynormfy-fz<x
28 0 27 wceq wffCauchy=f|x+yzynormfy-fz<x