Step |
Hyp |
Ref |
Expression |
0 |
|
clfn |
|- LFnl |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
vf |
|- f |
4 |
|
cbs |
|- Base |
5 |
|
csca |
|- Scalar |
6 |
1
|
cv |
|- w |
7 |
6 5
|
cfv |
|- ( Scalar ` w ) |
8 |
7 4
|
cfv |
|- ( Base ` ( Scalar ` w ) ) |
9 |
|
cmap |
|- ^m |
10 |
6 4
|
cfv |
|- ( Base ` w ) |
11 |
8 10 9
|
co |
|- ( ( Base ` ( Scalar ` w ) ) ^m ( Base ` w ) ) |
12 |
|
vr |
|- r |
13 |
|
vx |
|- x |
14 |
|
vy |
|- y |
15 |
3
|
cv |
|- f |
16 |
12
|
cv |
|- r |
17 |
|
cvsca |
|- .s |
18 |
6 17
|
cfv |
|- ( .s ` w ) |
19 |
13
|
cv |
|- x |
20 |
16 19 18
|
co |
|- ( r ( .s ` w ) x ) |
21 |
|
cplusg |
|- +g |
22 |
6 21
|
cfv |
|- ( +g ` w ) |
23 |
14
|
cv |
|- y |
24 |
20 23 22
|
co |
|- ( ( r ( .s ` w ) x ) ( +g ` w ) y ) |
25 |
24 15
|
cfv |
|- ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) |
26 |
|
cmulr |
|- .r |
27 |
7 26
|
cfv |
|- ( .r ` ( Scalar ` w ) ) |
28 |
19 15
|
cfv |
|- ( f ` x ) |
29 |
16 28 27
|
co |
|- ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) |
30 |
7 21
|
cfv |
|- ( +g ` ( Scalar ` w ) ) |
31 |
23 15
|
cfv |
|- ( f ` y ) |
32 |
29 31 30
|
co |
|- ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) |
33 |
25 32
|
wceq |
|- ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) |
34 |
33 14 10
|
wral |
|- A. y e. ( Base ` w ) ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) |
35 |
34 13 10
|
wral |
|- A. x e. ( Base ` w ) A. y e. ( Base ` w ) ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) |
36 |
35 12 8
|
wral |
|- A. r e. ( Base ` ( Scalar ` w ) ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) |
37 |
36 3 11
|
crab |
|- { f e. ( ( Base ` ( Scalar ` w ) ) ^m ( Base ` w ) ) | A. r e. ( Base ` ( Scalar ` w ) ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) } |
38 |
1 2 37
|
cmpt |
|- ( w e. _V |-> { f e. ( ( Base ` ( Scalar ` w ) ) ^m ( Base ` w ) ) | A. r e. ( Base ` ( Scalar ` w ) ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) } ) |
39 |
0 38
|
wceq |
|- LFnl = ( w e. _V |-> { f e. ( ( Base ` ( Scalar ` w ) ) ^m ( Base ` w ) ) | A. r e. ( Base ` ( Scalar ` w ) ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) } ) |