| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lflset.v |
|- V = ( Base ` W ) |
| 2 |
|
lflset.a |
|- .+ = ( +g ` W ) |
| 3 |
|
lflset.d |
|- D = ( Scalar ` W ) |
| 4 |
|
lflset.s |
|- .x. = ( .s ` W ) |
| 5 |
|
lflset.k |
|- K = ( Base ` D ) |
| 6 |
|
lflset.p |
|- .+^ = ( +g ` D ) |
| 7 |
|
lflset.t |
|- .X. = ( .r ` D ) |
| 8 |
|
lflset.f |
|- F = ( LFnl ` W ) |
| 9 |
|
elex |
|- ( W e. X -> W e. _V ) |
| 10 |
|
fveq2 |
|- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
| 11 |
10 3
|
eqtr4di |
|- ( w = W -> ( Scalar ` w ) = D ) |
| 12 |
11
|
fveq2d |
|- ( w = W -> ( Base ` ( Scalar ` w ) ) = ( Base ` D ) ) |
| 13 |
12 5
|
eqtr4di |
|- ( w = W -> ( Base ` ( Scalar ` w ) ) = K ) |
| 14 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
| 15 |
14 1
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = V ) |
| 16 |
13 15
|
oveq12d |
|- ( w = W -> ( ( Base ` ( Scalar ` w ) ) ^m ( Base ` w ) ) = ( K ^m V ) ) |
| 17 |
|
fveq2 |
|- ( w = W -> ( +g ` w ) = ( +g ` W ) ) |
| 18 |
17 2
|
eqtr4di |
|- ( w = W -> ( +g ` w ) = .+ ) |
| 19 |
|
fveq2 |
|- ( w = W -> ( .s ` w ) = ( .s ` W ) ) |
| 20 |
19 4
|
eqtr4di |
|- ( w = W -> ( .s ` w ) = .x. ) |
| 21 |
20
|
oveqd |
|- ( w = W -> ( r ( .s ` w ) x ) = ( r .x. x ) ) |
| 22 |
|
eqidd |
|- ( w = W -> y = y ) |
| 23 |
18 21 22
|
oveq123d |
|- ( w = W -> ( ( r ( .s ` w ) x ) ( +g ` w ) y ) = ( ( r .x. x ) .+ y ) ) |
| 24 |
23
|
fveq2d |
|- ( w = W -> ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( f ` ( ( r .x. x ) .+ y ) ) ) |
| 25 |
11
|
fveq2d |
|- ( w = W -> ( +g ` ( Scalar ` w ) ) = ( +g ` D ) ) |
| 26 |
25 6
|
eqtr4di |
|- ( w = W -> ( +g ` ( Scalar ` w ) ) = .+^ ) |
| 27 |
11
|
fveq2d |
|- ( w = W -> ( .r ` ( Scalar ` w ) ) = ( .r ` D ) ) |
| 28 |
27 7
|
eqtr4di |
|- ( w = W -> ( .r ` ( Scalar ` w ) ) = .X. ) |
| 29 |
28
|
oveqd |
|- ( w = W -> ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) = ( r .X. ( f ` x ) ) ) |
| 30 |
|
eqidd |
|- ( w = W -> ( f ` y ) = ( f ` y ) ) |
| 31 |
26 29 30
|
oveq123d |
|- ( w = W -> ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) = ( ( r .X. ( f ` x ) ) .+^ ( f ` y ) ) ) |
| 32 |
24 31
|
eqeq12d |
|- ( w = W -> ( ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) <-> ( f ` ( ( r .x. x ) .+ y ) ) = ( ( r .X. ( f ` x ) ) .+^ ( f ` y ) ) ) ) |
| 33 |
15 32
|
raleqbidv |
|- ( w = W -> ( A. y e. ( Base ` w ) ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) <-> A. y e. V ( f ` ( ( r .x. x ) .+ y ) ) = ( ( r .X. ( f ` x ) ) .+^ ( f ` y ) ) ) ) |
| 34 |
15 33
|
raleqbidv |
|- ( w = W -> ( A. x e. ( Base ` w ) A. y e. ( Base ` w ) ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) <-> A. x e. V A. y e. V ( f ` ( ( r .x. x ) .+ y ) ) = ( ( r .X. ( f ` x ) ) .+^ ( f ` y ) ) ) ) |
| 35 |
13 34
|
raleqbidv |
|- ( w = W -> ( A. r e. ( Base ` ( Scalar ` w ) ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) <-> A. r e. K A. x e. V A. y e. V ( f ` ( ( r .x. x ) .+ y ) ) = ( ( r .X. ( f ` x ) ) .+^ ( f ` y ) ) ) ) |
| 36 |
16 35
|
rabeqbidv |
|- ( w = W -> { f e. ( ( Base ` ( Scalar ` w ) ) ^m ( Base ` w ) ) | A. r e. ( Base ` ( Scalar ` w ) ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) } = { f e. ( K ^m V ) | A. r e. K A. x e. V A. y e. V ( f ` ( ( r .x. x ) .+ y ) ) = ( ( r .X. ( f ` x ) ) .+^ ( f ` y ) ) } ) |
| 37 |
|
df-lfl |
|- LFnl = ( w e. _V |-> { f e. ( ( Base ` ( Scalar ` w ) ) ^m ( Base ` w ) ) | A. r e. ( Base ` ( Scalar ` w ) ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) ( f ` ( ( r ( .s ` w ) x ) ( +g ` w ) y ) ) = ( ( r ( .r ` ( Scalar ` w ) ) ( f ` x ) ) ( +g ` ( Scalar ` w ) ) ( f ` y ) ) } ) |
| 38 |
|
ovex |
|- ( K ^m V ) e. _V |
| 39 |
38
|
rabex |
|- { f e. ( K ^m V ) | A. r e. K A. x e. V A. y e. V ( f ` ( ( r .x. x ) .+ y ) ) = ( ( r .X. ( f ` x ) ) .+^ ( f ` y ) ) } e. _V |
| 40 |
36 37 39
|
fvmpt |
|- ( W e. _V -> ( LFnl ` W ) = { f e. ( K ^m V ) | A. r e. K A. x e. V A. y e. V ( f ` ( ( r .x. x ) .+ y ) ) = ( ( r .X. ( f ` x ) ) .+^ ( f ` y ) ) } ) |
| 41 |
8 40
|
eqtrid |
|- ( W e. _V -> F = { f e. ( K ^m V ) | A. r e. K A. x e. V A. y e. V ( f ` ( ( r .x. x ) .+ y ) ) = ( ( r .X. ( f ` x ) ) .+^ ( f ` y ) ) } ) |
| 42 |
9 41
|
syl |
|- ( W e. X -> F = { f e. ( K ^m V ) | A. r e. K A. x e. V A. y e. V ( f ` ( ( r .x. x ) .+ y ) ) = ( ( r .X. ( f ` x ) ) .+^ ( f ` y ) ) } ) |