| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lflset.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lflset.a |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
lflset.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
lflset.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
|
lflset.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
| 6 |
|
lflset.p |
⊢ ⨣ = ( +g ‘ 𝐷 ) |
| 7 |
|
lflset.t |
⊢ × = ( .r ‘ 𝐷 ) |
| 8 |
|
lflset.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 9 |
|
elex |
⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) |
| 10 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
| 11 |
10 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐷 ) |
| 12 |
11
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = ( Base ‘ 𝐷 ) ) |
| 13 |
12 5
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = 𝐾 ) |
| 14 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
| 15 |
14 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
| 16 |
13 15
|
oveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) = ( 𝐾 ↑m 𝑉 ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( +g ‘ 𝑤 ) = ( +g ‘ 𝑊 ) ) |
| 18 |
17 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( +g ‘ 𝑤 ) = + ) |
| 19 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) |
| 20 |
19 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = · ) |
| 21 |
20
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) = ( 𝑟 · 𝑥 ) ) |
| 22 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝑦 = 𝑦 ) |
| 23 |
18 21 22
|
oveq123d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) = ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) |
| 24 |
23
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) ) |
| 25 |
11
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( +g ‘ ( Scalar ‘ 𝑤 ) ) = ( +g ‘ 𝐷 ) ) |
| 26 |
25 6
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( +g ‘ ( Scalar ‘ 𝑤 ) ) = ⨣ ) |
| 27 |
11
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( .r ‘ ( Scalar ‘ 𝑤 ) ) = ( .r ‘ 𝐷 ) ) |
| 28 |
27 7
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( .r ‘ ( Scalar ‘ 𝑤 ) ) = × ) |
| 29 |
28
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) = ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ) |
| 30 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 31 |
26 29 30
|
oveq123d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) |
| 32 |
24 31
|
eqeq12d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 33 |
15 32
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 34 |
15 33
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 35 |
13 34
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 36 |
16 35
|
rabeqbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) ∣ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∈ ( 𝐾 ↑m 𝑉 ) ∣ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) |
| 37 |
|
df-lfl |
⊢ LFnl = ( 𝑤 ∈ V ↦ { 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) ∣ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) } ) |
| 38 |
|
ovex |
⊢ ( 𝐾 ↑m 𝑉 ) ∈ V |
| 39 |
38
|
rabex |
⊢ { 𝑓 ∈ ( 𝐾 ↑m 𝑉 ) ∣ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ∈ V |
| 40 |
36 37 39
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( LFnl ‘ 𝑊 ) = { 𝑓 ∈ ( 𝐾 ↑m 𝑉 ) ∣ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) |
| 41 |
8 40
|
eqtrid |
⊢ ( 𝑊 ∈ V → 𝐹 = { 𝑓 ∈ ( 𝐾 ↑m 𝑉 ) ∣ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) |
| 42 |
9 41
|
syl |
⊢ ( 𝑊 ∈ 𝑋 → 𝐹 = { 𝑓 ∈ ( 𝐾 ↑m 𝑉 ) ∣ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) |