Metamath Proof Explorer


Theorem lflset

Description: The set of linear functionals in a left module or left vector space. (Contributed by NM, 15-Apr-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lflset.v 𝑉 = ( Base ‘ 𝑊 )
lflset.a + = ( +g𝑊 )
lflset.d 𝐷 = ( Scalar ‘ 𝑊 )
lflset.s · = ( ·𝑠𝑊 )
lflset.k 𝐾 = ( Base ‘ 𝐷 )
lflset.p = ( +g𝐷 )
lflset.t × = ( .r𝐷 )
lflset.f 𝐹 = ( LFnl ‘ 𝑊 )
Assertion lflset ( 𝑊𝑋𝐹 = { 𝑓 ∈ ( 𝐾m 𝑉 ) ∣ ∀ 𝑟𝐾𝑥𝑉𝑦𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓𝑥 ) ) ( 𝑓𝑦 ) ) } )

Proof

Step Hyp Ref Expression
1 lflset.v 𝑉 = ( Base ‘ 𝑊 )
2 lflset.a + = ( +g𝑊 )
3 lflset.d 𝐷 = ( Scalar ‘ 𝑊 )
4 lflset.s · = ( ·𝑠𝑊 )
5 lflset.k 𝐾 = ( Base ‘ 𝐷 )
6 lflset.p = ( +g𝐷 )
7 lflset.t × = ( .r𝐷 )
8 lflset.f 𝐹 = ( LFnl ‘ 𝑊 )
9 elex ( 𝑊𝑋𝑊 ∈ V )
10 fveq2 ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) )
11 10 3 eqtr4di ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐷 )
12 11 fveq2d ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = ( Base ‘ 𝐷 ) )
13 12 5 eqtr4di ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = 𝐾 )
14 fveq2 ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) )
15 14 1 eqtr4di ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 )
16 13 15 oveq12d ( 𝑤 = 𝑊 → ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) = ( 𝐾m 𝑉 ) )
17 fveq2 ( 𝑤 = 𝑊 → ( +g𝑤 ) = ( +g𝑊 ) )
18 17 2 eqtr4di ( 𝑤 = 𝑊 → ( +g𝑤 ) = + )
19 fveq2 ( 𝑤 = 𝑊 → ( ·𝑠𝑤 ) = ( ·𝑠𝑊 ) )
20 19 4 eqtr4di ( 𝑤 = 𝑊 → ( ·𝑠𝑤 ) = · )
21 20 oveqd ( 𝑤 = 𝑊 → ( 𝑟 ( ·𝑠𝑤 ) 𝑥 ) = ( 𝑟 · 𝑥 ) )
22 eqidd ( 𝑤 = 𝑊𝑦 = 𝑦 )
23 18 21 22 oveq123d ( 𝑤 = 𝑊 → ( ( 𝑟 ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) 𝑦 ) = ( ( 𝑟 · 𝑥 ) + 𝑦 ) )
24 23 fveq2d ( 𝑤 = 𝑊 → ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) 𝑦 ) ) = ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) )
25 11 fveq2d ( 𝑤 = 𝑊 → ( +g ‘ ( Scalar ‘ 𝑤 ) ) = ( +g𝐷 ) )
26 25 6 eqtr4di ( 𝑤 = 𝑊 → ( +g ‘ ( Scalar ‘ 𝑤 ) ) = )
27 11 fveq2d ( 𝑤 = 𝑊 → ( .r ‘ ( Scalar ‘ 𝑤 ) ) = ( .r𝐷 ) )
28 27 7 eqtr4di ( 𝑤 = 𝑊 → ( .r ‘ ( Scalar ‘ 𝑤 ) ) = × )
29 28 oveqd ( 𝑤 = 𝑊 → ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑥 ) ) = ( 𝑟 × ( 𝑓𝑥 ) ) )
30 eqidd ( 𝑤 = 𝑊 → ( 𝑓𝑦 ) = ( 𝑓𝑦 ) )
31 26 29 30 oveq123d ( 𝑤 = 𝑊 → ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑦 ) ) = ( ( 𝑟 × ( 𝑓𝑥 ) ) ( 𝑓𝑦 ) ) )
32 24 31 eqeq12d ( 𝑤 = 𝑊 → ( ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑦 ) ) ↔ ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓𝑥 ) ) ( 𝑓𝑦 ) ) ) )
33 15 32 raleqbidv ( 𝑤 = 𝑊 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑦 ) ) ↔ ∀ 𝑦𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓𝑥 ) ) ( 𝑓𝑦 ) ) ) )
34 15 33 raleqbidv ( 𝑤 = 𝑊 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑦 ) ) ↔ ∀ 𝑥𝑉𝑦𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓𝑥 ) ) ( 𝑓𝑦 ) ) ) )
35 13 34 raleqbidv ( 𝑤 = 𝑊 → ( ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑦 ) ) ↔ ∀ 𝑟𝐾𝑥𝑉𝑦𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓𝑥 ) ) ( 𝑓𝑦 ) ) ) )
36 16 35 rabeqbidv ( 𝑤 = 𝑊 → { 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) ∣ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑦 ) ) } = { 𝑓 ∈ ( 𝐾m 𝑉 ) ∣ ∀ 𝑟𝐾𝑥𝑉𝑦𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓𝑥 ) ) ( 𝑓𝑦 ) ) } )
37 df-lfl LFnl = ( 𝑤 ∈ V ↦ { 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) ∣ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠𝑤 ) 𝑥 ) ( +g𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓𝑦 ) ) } )
38 ovex ( 𝐾m 𝑉 ) ∈ V
39 38 rabex { 𝑓 ∈ ( 𝐾m 𝑉 ) ∣ ∀ 𝑟𝐾𝑥𝑉𝑦𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓𝑥 ) ) ( 𝑓𝑦 ) ) } ∈ V
40 36 37 39 fvmpt ( 𝑊 ∈ V → ( LFnl ‘ 𝑊 ) = { 𝑓 ∈ ( 𝐾m 𝑉 ) ∣ ∀ 𝑟𝐾𝑥𝑉𝑦𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓𝑥 ) ) ( 𝑓𝑦 ) ) } )
41 8 40 syl5eq ( 𝑊 ∈ V → 𝐹 = { 𝑓 ∈ ( 𝐾m 𝑉 ) ∣ ∀ 𝑟𝐾𝑥𝑉𝑦𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓𝑥 ) ) ( 𝑓𝑦 ) ) } )
42 9 41 syl ( 𝑊𝑋𝐹 = { 𝑓 ∈ ( 𝐾m 𝑉 ) ∣ ∀ 𝑟𝐾𝑥𝑉𝑦𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓𝑥 ) ) ( 𝑓𝑦 ) ) } )