Step |
Hyp |
Ref |
Expression |
1 |
|
lflset.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lflset.a |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lflset.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
4 |
|
lflset.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
lflset.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
6 |
|
lflset.p |
⊢ ⨣ = ( +g ‘ 𝐷 ) |
7 |
|
lflset.t |
⊢ × = ( .r ‘ 𝐷 ) |
8 |
|
lflset.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
9 |
|
elex |
⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) |
10 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
11 |
10 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐷 ) |
12 |
11
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = ( Base ‘ 𝐷 ) ) |
13 |
12 5
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = 𝐾 ) |
14 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
15 |
14 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
16 |
13 15
|
oveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) = ( 𝐾 ↑m 𝑉 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( +g ‘ 𝑤 ) = ( +g ‘ 𝑊 ) ) |
18 |
17 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( +g ‘ 𝑤 ) = + ) |
19 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) |
20 |
19 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = · ) |
21 |
20
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) = ( 𝑟 · 𝑥 ) ) |
22 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝑦 = 𝑦 ) |
23 |
18 21 22
|
oveq123d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) = ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) |
24 |
23
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) ) |
25 |
11
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( +g ‘ ( Scalar ‘ 𝑤 ) ) = ( +g ‘ 𝐷 ) ) |
26 |
25 6
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( +g ‘ ( Scalar ‘ 𝑤 ) ) = ⨣ ) |
27 |
11
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( .r ‘ ( Scalar ‘ 𝑤 ) ) = ( .r ‘ 𝐷 ) ) |
28 |
27 7
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( .r ‘ ( Scalar ‘ 𝑤 ) ) = × ) |
29 |
28
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) = ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ) |
30 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑦 ) ) |
31 |
26 29 30
|
oveq123d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) |
32 |
24 31
|
eqeq12d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
33 |
15 32
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
34 |
15 33
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
35 |
13 34
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
36 |
16 35
|
rabeqbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) ∣ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∈ ( 𝐾 ↑m 𝑉 ) ∣ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) |
37 |
|
df-lfl |
⊢ LFnl = ( 𝑤 ∈ V ↦ { 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) ∣ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) } ) |
38 |
|
ovex |
⊢ ( 𝐾 ↑m 𝑉 ) ∈ V |
39 |
38
|
rabex |
⊢ { 𝑓 ∈ ( 𝐾 ↑m 𝑉 ) ∣ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ∈ V |
40 |
36 37 39
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( LFnl ‘ 𝑊 ) = { 𝑓 ∈ ( 𝐾 ↑m 𝑉 ) ∣ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) |
41 |
8 40
|
syl5eq |
⊢ ( 𝑊 ∈ V → 𝐹 = { 𝑓 ∈ ( 𝐾 ↑m 𝑉 ) ∣ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) |
42 |
9 41
|
syl |
⊢ ( 𝑊 ∈ 𝑋 → 𝐹 = { 𝑓 ∈ ( 𝐾 ↑m 𝑉 ) ∣ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑓 ‘ ( ( 𝑟 · 𝑥 ) + 𝑦 ) ) = ( ( 𝑟 × ( 𝑓 ‘ 𝑥 ) ) ⨣ ( 𝑓 ‘ 𝑦 ) ) } ) |