| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clfn |
⊢ LFnl |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
|
csca |
⊢ Scalar |
| 6 |
1
|
cv |
⊢ 𝑤 |
| 7 |
6 5
|
cfv |
⊢ ( Scalar ‘ 𝑤 ) |
| 8 |
7 4
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑤 ) ) |
| 9 |
|
cmap |
⊢ ↑m |
| 10 |
6 4
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 11 |
8 10 9
|
co |
⊢ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) |
| 12 |
|
vr |
⊢ 𝑟 |
| 13 |
|
vx |
⊢ 𝑥 |
| 14 |
|
vy |
⊢ 𝑦 |
| 15 |
3
|
cv |
⊢ 𝑓 |
| 16 |
12
|
cv |
⊢ 𝑟 |
| 17 |
|
cvsca |
⊢ ·𝑠 |
| 18 |
6 17
|
cfv |
⊢ ( ·𝑠 ‘ 𝑤 ) |
| 19 |
13
|
cv |
⊢ 𝑥 |
| 20 |
16 19 18
|
co |
⊢ ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) |
| 21 |
|
cplusg |
⊢ +g |
| 22 |
6 21
|
cfv |
⊢ ( +g ‘ 𝑤 ) |
| 23 |
14
|
cv |
⊢ 𝑦 |
| 24 |
20 23 22
|
co |
⊢ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) |
| 25 |
24 15
|
cfv |
⊢ ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) |
| 26 |
|
cmulr |
⊢ .r |
| 27 |
7 26
|
cfv |
⊢ ( .r ‘ ( Scalar ‘ 𝑤 ) ) |
| 28 |
19 15
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
| 29 |
16 28 27
|
co |
⊢ ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) |
| 30 |
7 21
|
cfv |
⊢ ( +g ‘ ( Scalar ‘ 𝑤 ) ) |
| 31 |
23 15
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
| 32 |
29 31 30
|
co |
⊢ ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) |
| 33 |
25 32
|
wceq |
⊢ ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) |
| 34 |
33 14 10
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) |
| 35 |
34 13 10
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) |
| 36 |
35 12 8
|
wral |
⊢ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) |
| 37 |
36 3 11
|
crab |
⊢ { 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) ∣ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) } |
| 38 |
1 2 37
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ { 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) ∣ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) } ) |
| 39 |
0 38
|
wceq |
⊢ LFnl = ( 𝑤 ∈ V ↦ { 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↑m ( Base ‘ 𝑤 ) ) ∣ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( 𝑓 ‘ ( ( 𝑟 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ( +g ‘ 𝑤 ) 𝑦 ) ) = ( ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑤 ) ) ( 𝑓 ‘ 𝑦 ) ) } ) |