| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cline2 |
|- Line |
| 1 |
|
va |
|- a |
| 2 |
|
vb |
|- b |
| 3 |
|
vl |
|- l |
| 4 |
|
vn |
|- n |
| 5 |
|
cn |
|- NN |
| 6 |
1
|
cv |
|- a |
| 7 |
|
cee |
|- EE |
| 8 |
4
|
cv |
|- n |
| 9 |
8 7
|
cfv |
|- ( EE ` n ) |
| 10 |
6 9
|
wcel |
|- a e. ( EE ` n ) |
| 11 |
2
|
cv |
|- b |
| 12 |
11 9
|
wcel |
|- b e. ( EE ` n ) |
| 13 |
6 11
|
wne |
|- a =/= b |
| 14 |
10 12 13
|
w3a |
|- ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) |
| 15 |
3
|
cv |
|- l |
| 16 |
6 11
|
cop |
|- <. a , b >. |
| 17 |
|
ccolin |
|- Colinear |
| 18 |
17
|
ccnv |
|- `' Colinear |
| 19 |
16 18
|
cec |
|- [ <. a , b >. ] `' Colinear |
| 20 |
15 19
|
wceq |
|- l = [ <. a , b >. ] `' Colinear |
| 21 |
14 20
|
wa |
|- ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) |
| 22 |
21 4 5
|
wrex |
|- E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) |
| 23 |
22 1 2 3
|
coprab |
|- { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } |
| 24 |
0 23
|
wceq |
|- Line = { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } |