| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cline2 |  |-  Line | 
						
							| 1 |  | va |  |-  a | 
						
							| 2 |  | vb |  |-  b | 
						
							| 3 |  | vl |  |-  l | 
						
							| 4 |  | vn |  |-  n | 
						
							| 5 |  | cn |  |-  NN | 
						
							| 6 | 1 | cv |  |-  a | 
						
							| 7 |  | cee |  |-  EE | 
						
							| 8 | 4 | cv |  |-  n | 
						
							| 9 | 8 7 | cfv |  |-  ( EE ` n ) | 
						
							| 10 | 6 9 | wcel |  |-  a e. ( EE ` n ) | 
						
							| 11 | 2 | cv |  |-  b | 
						
							| 12 | 11 9 | wcel |  |-  b e. ( EE ` n ) | 
						
							| 13 | 6 11 | wne |  |-  a =/= b | 
						
							| 14 | 10 12 13 | w3a |  |-  ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) | 
						
							| 15 | 3 | cv |  |-  l | 
						
							| 16 | 6 11 | cop |  |-  <. a , b >. | 
						
							| 17 |  | ccolin |  |-  Colinear | 
						
							| 18 | 17 | ccnv |  |-  `' Colinear | 
						
							| 19 | 16 18 | cec |  |-  [ <. a , b >. ] `' Colinear | 
						
							| 20 | 15 19 | wceq |  |-  l = [ <. a , b >. ] `' Colinear | 
						
							| 21 | 14 20 | wa |  |-  ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) | 
						
							| 22 | 21 4 5 | wrex |  |-  E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) | 
						
							| 23 | 22 1 2 3 | coprab |  |-  { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } | 
						
							| 24 | 0 23 | wceq |  |-  Line = { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } |