Metamath Proof Explorer


Definition df-line2

Description: Define the Line function. This function generates the line passing through the distinct points a and b . Adapted from definition 6.14 of Schwabhauser p. 45. (Contributed by Scott Fenton, 25-Oct-2013)

Ref Expression
Assertion df-line2
|- Line = { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cline2
 |-  Line
1 va
 |-  a
2 vb
 |-  b
3 vl
 |-  l
4 vn
 |-  n
5 cn
 |-  NN
6 1 cv
 |-  a
7 cee
 |-  EE
8 4 cv
 |-  n
9 8 7 cfv
 |-  ( EE ` n )
10 6 9 wcel
 |-  a e. ( EE ` n )
11 2 cv
 |-  b
12 11 9 wcel
 |-  b e. ( EE ` n )
13 6 11 wne
 |-  a =/= b
14 10 12 13 w3a
 |-  ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b )
15 3 cv
 |-  l
16 6 11 cop
 |-  <. a , b >.
17 ccolin
 |-  Colinear
18 17 ccnv
 |-  `' Colinear
19 16 18 cec
 |-  [ <. a , b >. ] `' Colinear
20 15 19 wceq
 |-  l = [ <. a , b >. ] `' Colinear
21 14 20 wa
 |-  ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear )
22 21 4 5 wrex
 |-  E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear )
23 22 1 2 3 coprab
 |-  { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) }
24 0 23 wceq
 |-  Line = { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) }