Step |
Hyp |
Ref |
Expression |
0 |
|
cline2 |
⊢ Line |
1 |
|
va |
⊢ 𝑎 |
2 |
|
vb |
⊢ 𝑏 |
3 |
|
vl |
⊢ 𝑙 |
4 |
|
vn |
⊢ 𝑛 |
5 |
|
cn |
⊢ ℕ |
6 |
1
|
cv |
⊢ 𝑎 |
7 |
|
cee |
⊢ 𝔼 |
8 |
4
|
cv |
⊢ 𝑛 |
9 |
8 7
|
cfv |
⊢ ( 𝔼 ‘ 𝑛 ) |
10 |
6 9
|
wcel |
⊢ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) |
11 |
2
|
cv |
⊢ 𝑏 |
12 |
11 9
|
wcel |
⊢ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) |
13 |
6 11
|
wne |
⊢ 𝑎 ≠ 𝑏 |
14 |
10 12 13
|
w3a |
⊢ ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) |
15 |
3
|
cv |
⊢ 𝑙 |
16 |
6 11
|
cop |
⊢ 〈 𝑎 , 𝑏 〉 |
17 |
|
ccolin |
⊢ Colinear |
18 |
17
|
ccnv |
⊢ ◡ Colinear |
19 |
16 18
|
cec |
⊢ [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear |
20 |
15 19
|
wceq |
⊢ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear |
21 |
14 20
|
wa |
⊢ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) |
22 |
21 4 5
|
wrex |
⊢ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) |
23 |
22 1 2 3
|
coprab |
⊢ { 〈 〈 𝑎 , 𝑏 〉 , 𝑙 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) } |
24 |
0 23
|
wceq |
⊢ Line = { 〈 〈 𝑎 , 𝑏 〉 , 𝑙 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) } |