Metamath Proof Explorer


Definition df-line2

Description: Define the Line function. This function generates the line passing through the distinct points a and b . Adapted from definition 6.14 of Schwabhauser p. 45. (Contributed by Scott Fenton, 25-Oct-2013)

Ref Expression
Assertion df-line2 Line = { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cline2 Line
1 va 𝑎
2 vb 𝑏
3 vl 𝑙
4 vn 𝑛
5 cn
6 1 cv 𝑎
7 cee 𝔼
8 4 cv 𝑛
9 8 7 cfv ( 𝔼 ‘ 𝑛 )
10 6 9 wcel 𝑎 ∈ ( 𝔼 ‘ 𝑛 )
11 2 cv 𝑏
12 11 9 wcel 𝑏 ∈ ( 𝔼 ‘ 𝑛 )
13 6 11 wne 𝑎𝑏
14 10 12 13 w3a ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 )
15 3 cv 𝑙
16 6 11 cop 𝑎 , 𝑏
17 ccolin Colinear
18 17 ccnv Colinear
19 16 18 cec [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear
20 15 19 wceq 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear
21 14 20 wa ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear )
22 21 4 5 wrex 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear )
23 22 1 2 3 coprab { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) }
24 0 23 wceq Line = { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) }