| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cline2 | ⊢ Line | 
						
							| 1 |  | va | ⊢ 𝑎 | 
						
							| 2 |  | vb | ⊢ 𝑏 | 
						
							| 3 |  | vl | ⊢ 𝑙 | 
						
							| 4 |  | vn | ⊢ 𝑛 | 
						
							| 5 |  | cn | ⊢ ℕ | 
						
							| 6 | 1 | cv | ⊢ 𝑎 | 
						
							| 7 |  | cee | ⊢ 𝔼 | 
						
							| 8 | 4 | cv | ⊢ 𝑛 | 
						
							| 9 | 8 7 | cfv | ⊢ ( 𝔼 ‘ 𝑛 ) | 
						
							| 10 | 6 9 | wcel | ⊢ 𝑎  ∈  ( 𝔼 ‘ 𝑛 ) | 
						
							| 11 | 2 | cv | ⊢ 𝑏 | 
						
							| 12 | 11 9 | wcel | ⊢ 𝑏  ∈  ( 𝔼 ‘ 𝑛 ) | 
						
							| 13 | 6 11 | wne | ⊢ 𝑎  ≠  𝑏 | 
						
							| 14 | 10 12 13 | w3a | ⊢ ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 ) | 
						
							| 15 | 3 | cv | ⊢ 𝑙 | 
						
							| 16 | 6 11 | cop | ⊢ 〈 𝑎 ,  𝑏 〉 | 
						
							| 17 |  | ccolin | ⊢  Colinear | 
						
							| 18 | 17 | ccnv | ⊢ ◡  Colinear | 
						
							| 19 | 16 18 | cec | ⊢ [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear | 
						
							| 20 | 15 19 | wceq | ⊢ 𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear | 
						
							| 21 | 14 20 | wa | ⊢ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) | 
						
							| 22 | 21 4 5 | wrex | ⊢ ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) | 
						
							| 23 | 22 1 2 3 | coprab | ⊢ { 〈 〈 𝑎 ,  𝑏 〉 ,  𝑙 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) } | 
						
							| 24 | 0 23 | wceq | ⊢ Line  =  { 〈 〈 𝑎 ,  𝑏 〉 ,  𝑙 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) } |