Step |
Hyp |
Ref |
Expression |
0 |
|
cmdat |
|- maDet |
1 |
|
vn |
|- n |
2 |
|
cvv |
|- _V |
3 |
|
vr |
|- r |
4 |
|
vm |
|- m |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- n |
7 |
|
cmat |
|- Mat |
8 |
3
|
cv |
|- r |
9 |
6 8 7
|
co |
|- ( n Mat r ) |
10 |
9 5
|
cfv |
|- ( Base ` ( n Mat r ) ) |
11 |
|
cgsu |
|- gsum |
12 |
|
vp |
|- p |
13 |
|
csymg |
|- SymGrp |
14 |
6 13
|
cfv |
|- ( SymGrp ` n ) |
15 |
14 5
|
cfv |
|- ( Base ` ( SymGrp ` n ) ) |
16 |
|
czrh |
|- ZRHom |
17 |
8 16
|
cfv |
|- ( ZRHom ` r ) |
18 |
|
cpsgn |
|- pmSgn |
19 |
6 18
|
cfv |
|- ( pmSgn ` n ) |
20 |
17 19
|
ccom |
|- ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) |
21 |
12
|
cv |
|- p |
22 |
21 20
|
cfv |
|- ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) |
23 |
|
cmulr |
|- .r |
24 |
8 23
|
cfv |
|- ( .r ` r ) |
25 |
|
cmgp |
|- mulGrp |
26 |
8 25
|
cfv |
|- ( mulGrp ` r ) |
27 |
|
vx |
|- x |
28 |
27
|
cv |
|- x |
29 |
28 21
|
cfv |
|- ( p ` x ) |
30 |
4
|
cv |
|- m |
31 |
29 28 30
|
co |
|- ( ( p ` x ) m x ) |
32 |
27 6 31
|
cmpt |
|- ( x e. n |-> ( ( p ` x ) m x ) ) |
33 |
26 32 11
|
co |
|- ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) |
34 |
22 33 24
|
co |
|- ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) |
35 |
12 15 34
|
cmpt |
|- ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) |
36 |
8 35 11
|
co |
|- ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) |
37 |
4 10 36
|
cmpt |
|- ( m e. ( Base ` ( n Mat r ) ) |-> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
38 |
1 3 2 2 37
|
cmpo |
|- ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
39 |
0 38
|
wceq |
|- maDet = ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |