Step |
Hyp |
Ref |
Expression |
1 |
|
mdetralt.d |
|- D = ( N maDet R ) |
2 |
|
mdetralt.a |
|- A = ( N Mat R ) |
3 |
|
mdetralt.b |
|- B = ( Base ` A ) |
4 |
|
mdetralt.z |
|- .0. = ( 0g ` R ) |
5 |
|
mdetralt.r |
|- ( ph -> R e. CRing ) |
6 |
|
mdetralt.x |
|- ( ph -> X e. B ) |
7 |
|
mdetralt.i |
|- ( ph -> I e. N ) |
8 |
|
mdetralt.j |
|- ( ph -> J e. N ) |
9 |
|
mdetralt.ij |
|- ( ph -> I =/= J ) |
10 |
|
mdetralt.eq |
|- ( ph -> A. a e. N ( I X a ) = ( J X a ) ) |
11 |
|
eqid |
|- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
12 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
13 |
|
eqid |
|- ( pmSgn ` N ) = ( pmSgn ` N ) |
14 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
15 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
16 |
1 2 3 11 12 13 14 15
|
mdetleib |
|- ( X e. B -> ( D ` X ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) |
17 |
6 16
|
syl |
|- ( ph -> ( D ` X ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) |
18 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
19 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
20 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
21 |
5 20
|
syl |
|- ( ph -> R e. Ring ) |
22 |
|
ringcmn |
|- ( R e. Ring -> R e. CMnd ) |
23 |
21 22
|
syl |
|- ( ph -> R e. CMnd ) |
24 |
2 3
|
matrcl |
|- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
25 |
6 24
|
syl |
|- ( ph -> ( N e. Fin /\ R e. _V ) ) |
26 |
25
|
simpld |
|- ( ph -> N e. Fin ) |
27 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
28 |
27 11
|
symgbasfi |
|- ( N e. Fin -> ( Base ` ( SymGrp ` N ) ) e. Fin ) |
29 |
26 28
|
syl |
|- ( ph -> ( Base ` ( SymGrp ` N ) ) e. Fin ) |
30 |
21
|
adantr |
|- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> R e. Ring ) |
31 |
|
zrhpsgnmhm |
|- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
32 |
21 26 31
|
syl2anc |
|- ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
33 |
15 18
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
34 |
11 33
|
mhmf |
|- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> ( Base ` R ) ) |
35 |
32 34
|
syl |
|- ( ph -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> ( Base ` R ) ) |
36 |
35
|
ffvelrnda |
|- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) e. ( Base ` R ) ) |
37 |
15
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
38 |
5 37
|
syl |
|- ( ph -> ( mulGrp ` R ) e. CMnd ) |
39 |
38
|
adantr |
|- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( mulGrp ` R ) e. CMnd ) |
40 |
26
|
adantr |
|- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> N e. Fin ) |
41 |
2 18 3
|
matbas2i |
|- ( X e. B -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
42 |
6 41
|
syl |
|- ( ph -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
43 |
|
elmapi |
|- ( X e. ( ( Base ` R ) ^m ( N X. N ) ) -> X : ( N X. N ) --> ( Base ` R ) ) |
44 |
42 43
|
syl |
|- ( ph -> X : ( N X. N ) --> ( Base ` R ) ) |
45 |
44
|
ad2antrr |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> X : ( N X. N ) --> ( Base ` R ) ) |
46 |
27 11
|
symgbasf1o |
|- ( p e. ( Base ` ( SymGrp ` N ) ) -> p : N -1-1-onto-> N ) |
47 |
46
|
adantl |
|- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> p : N -1-1-onto-> N ) |
48 |
|
f1of |
|- ( p : N -1-1-onto-> N -> p : N --> N ) |
49 |
47 48
|
syl |
|- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> p : N --> N ) |
50 |
49
|
ffvelrnda |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> ( p ` c ) e. N ) |
51 |
|
simpr |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> c e. N ) |
52 |
45 50 51
|
fovrnd |
|- ( ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> ( ( p ` c ) X c ) e. ( Base ` R ) ) |
53 |
52
|
ralrimiva |
|- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> A. c e. N ( ( p ` c ) X c ) e. ( Base ` R ) ) |
54 |
33 39 40 53
|
gsummptcl |
|- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) |
55 |
18 14
|
ringcl |
|- ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) e. ( Base ` R ) /\ ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) e. ( Base ` R ) ) |
56 |
30 36 54 55
|
syl3anc |
|- ( ( ph /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) e. ( Base ` R ) ) |
57 |
|
disjdif |
|- ( ( pmEven ` N ) i^i ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = (/) |
58 |
57
|
a1i |
|- ( ph -> ( ( pmEven ` N ) i^i ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = (/) ) |
59 |
27 11
|
evpmss |
|- ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) |
60 |
|
undif |
|- ( ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) <-> ( ( pmEven ` N ) u. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( Base ` ( SymGrp ` N ) ) ) |
61 |
59 60
|
mpbi |
|- ( ( pmEven ` N ) u. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( Base ` ( SymGrp ` N ) ) |
62 |
61
|
eqcomi |
|- ( Base ` ( SymGrp ` N ) ) = ( ( pmEven ` N ) u. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
63 |
62
|
a1i |
|- ( ph -> ( Base ` ( SymGrp ` N ) ) = ( ( pmEven ` N ) u. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) |
64 |
|
eqid |
|- ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
65 |
18 19 23 29 56 58 63 64
|
gsummptfidmsplitres |
|- ( ph -> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) = ( ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) ) ( +g ` R ) ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) ) ) |
66 |
|
resmpt |
|- ( ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) -> ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) = ( p e. ( pmEven ` N ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
67 |
59 66
|
ax-mp |
|- ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) = ( p e. ( pmEven ` N ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
68 |
21
|
adantr |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> R e. Ring ) |
69 |
26
|
adantr |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> N e. Fin ) |
70 |
|
simpr |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> p e. ( pmEven ` N ) ) |
71 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
72 |
12 13 71
|
zrhpsgnevpm |
|- ( ( R e. Ring /\ N e. Fin /\ p e. ( pmEven ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( 1r ` R ) ) |
73 |
68 69 70 72
|
syl3anc |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( 1r ` R ) ) |
74 |
73
|
oveq1d |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( 1r ` R ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
75 |
59
|
sseli |
|- ( p e. ( pmEven ` N ) -> p e. ( Base ` ( SymGrp ` N ) ) ) |
76 |
75 54
|
sylan2 |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) |
77 |
18 14 71
|
ringlidm |
|- ( ( R e. Ring /\ ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) |
78 |
68 76 77
|
syl2anc |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( 1r ` R ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) |
79 |
74 78
|
eqtrd |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) |
80 |
79
|
mpteq2dva |
|- ( ph -> ( p e. ( pmEven ` N ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
81 |
67 80
|
eqtrid |
|- ( ph -> ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
82 |
81
|
oveq2d |
|- ( ph -> ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) ) = ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
83 |
|
difss |
|- ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) C_ ( Base ` ( SymGrp ` N ) ) |
84 |
|
resmpt |
|- ( ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) C_ ( Base ` ( SymGrp ` N ) ) -> ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
85 |
83 84
|
ax-mp |
|- ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
86 |
21
|
adantr |
|- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> R e. Ring ) |
87 |
26
|
adantr |
|- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> N e. Fin ) |
88 |
|
simpr |
|- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
89 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
90 |
12 13 71 11 89
|
zrhpsgnodpm |
|- ( ( R e. Ring /\ N e. Fin /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( ( invg ` R ) ` ( 1r ` R ) ) ) |
91 |
86 87 88 90
|
syl3anc |
|- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( ( invg ` R ) ` ( 1r ` R ) ) ) |
92 |
91
|
oveq1d |
|- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
93 |
|
eldifi |
|- ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) -> p e. ( Base ` ( SymGrp ` N ) ) ) |
94 |
93 54
|
sylan2 |
|- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) |
95 |
18 14 71 89 86 94
|
ringnegl |
|- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( invg ` R ) ` ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
96 |
92 95
|
eqtrd |
|- ( ( ph /\ p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( ( invg ` R ) ` ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
97 |
96
|
mpteq2dva |
|- ( ph -> ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( invg ` R ) ` ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
98 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
99 |
21 98
|
syl |
|- ( ph -> R e. Grp ) |
100 |
18 89
|
grpinvf |
|- ( R e. Grp -> ( invg ` R ) : ( Base ` R ) --> ( Base ` R ) ) |
101 |
99 100
|
syl |
|- ( ph -> ( invg ` R ) : ( Base ` R ) --> ( Base ` R ) ) |
102 |
101 94
|
cofmpt |
|- ( ph -> ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( invg ` R ) ` ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
103 |
97 102
|
eqtr4d |
|- ( ph -> ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
104 |
85 103
|
eqtrid |
|- ( ph -> ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) = ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
105 |
104
|
oveq2d |
|- ( ph -> ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) = ( R gsum ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) |
106 |
|
ringabl |
|- ( R e. Ring -> R e. Abel ) |
107 |
21 106
|
syl |
|- ( ph -> R e. Abel ) |
108 |
|
difssd |
|- ( ph -> ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) C_ ( Base ` ( SymGrp ` N ) ) ) |
109 |
29 108
|
ssfid |
|- ( ph -> ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) e. Fin ) |
110 |
|
eqid |
|- ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) |
111 |
18 4 89 107 109 94 110
|
gsummptfidminv |
|- ( ph -> ( R gsum ( ( invg ` R ) o. ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) = ( ( invg ` R ) ` ( R gsum ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) |
112 |
94
|
ralrimiva |
|- ( ph -> A. p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) |
113 |
7 8
|
prssd |
|- ( ph -> { I , J } C_ N ) |
114 |
|
pr2nelem |
|- ( ( I e. N /\ J e. N /\ I =/= J ) -> { I , J } ~~ 2o ) |
115 |
7 8 9 114
|
syl3anc |
|- ( ph -> { I , J } ~~ 2o ) |
116 |
|
eqid |
|- ( pmTrsp ` N ) = ( pmTrsp ` N ) |
117 |
|
eqid |
|- ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) |
118 |
116 117
|
pmtrrn |
|- ( ( N e. Fin /\ { I , J } C_ N /\ { I , J } ~~ 2o ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) ) |
119 |
26 113 115 118
|
syl3anc |
|- ( ph -> ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) ) |
120 |
27 11 117
|
pmtrodpm |
|- ( ( N e. Fin /\ ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
121 |
26 119 120
|
syl2anc |
|- ( ph -> ( ( pmTrsp ` N ) ` { I , J } ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
122 |
27 11
|
evpmodpmf1o |
|- ( ( N e. Fin /\ ( ( pmTrsp ` N ) ` { I , J } ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) -> ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) : ( pmEven ` N ) -1-1-onto-> ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
123 |
26 121 122
|
syl2anc |
|- ( ph -> ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) : ( pmEven ` N ) -1-1-onto-> ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
124 |
18 23 109 112 110 123
|
gsummptfif1o |
|- ( ph -> ( R gsum ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( R gsum ( ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) o. ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) ) ) |
125 |
|
eleq1w |
|- ( p = q -> ( p e. ( pmEven ` N ) <-> q e. ( pmEven ` N ) ) ) |
126 |
125
|
anbi2d |
|- ( p = q -> ( ( ph /\ p e. ( pmEven ` N ) ) <-> ( ph /\ q e. ( pmEven ` N ) ) ) ) |
127 |
|
oveq2 |
|- ( p = q -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) |
128 |
127
|
eleq1d |
|- ( p = q -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) <-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) |
129 |
126 128
|
imbi12d |
|- ( p = q -> ( ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) <-> ( ( ph /\ q e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) ) |
130 |
27
|
symggrp |
|- ( N e. Fin -> ( SymGrp ` N ) e. Grp ) |
131 |
26 130
|
syl |
|- ( ph -> ( SymGrp ` N ) e. Grp ) |
132 |
131
|
adantr |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( SymGrp ` N ) e. Grp ) |
133 |
117 27 11
|
symgtrf |
|- ran ( pmTrsp ` N ) C_ ( Base ` ( SymGrp ` N ) ) |
134 |
119
|
adantr |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) ) |
135 |
133 134
|
sselid |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) ) |
136 |
75
|
adantl |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> p e. ( Base ` ( SymGrp ` N ) ) ) |
137 |
|
eqid |
|- ( +g ` ( SymGrp ` N ) ) = ( +g ` ( SymGrp ` N ) ) |
138 |
11 137
|
grpcl |
|- ( ( ( SymGrp ` N ) e. Grp /\ ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( Base ` ( SymGrp ` N ) ) ) |
139 |
132 135 136 138
|
syl3anc |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( Base ` ( SymGrp ` N ) ) ) |
140 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
141 |
27 13 140
|
psgnghm2 |
|- ( N e. Fin -> ( pmSgn ` N ) e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
142 |
26 141
|
syl |
|- ( ph -> ( pmSgn ` N ) e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
143 |
142
|
adantr |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( pmSgn ` N ) e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
144 |
|
prex |
|- { 1 , -u 1 } e. _V |
145 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
146 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
147 |
145 146
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
148 |
140 147
|
ressplusg |
|- ( { 1 , -u 1 } e. _V -> x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
149 |
144 148
|
ax-mp |
|- x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
150 |
11 137 149
|
ghmlin |
|- ( ( ( pmSgn ` N ) e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( pmSgn ` N ) ` ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) = ( ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) x. ( ( pmSgn ` N ) ` p ) ) ) |
151 |
143 135 136 150
|
syl3anc |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) = ( ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) x. ( ( pmSgn ` N ) ` p ) ) ) |
152 |
27 117 13
|
psgnpmtr |
|- ( ( ( pmTrsp ` N ) ` { I , J } ) e. ran ( pmTrsp ` N ) -> ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) = -u 1 ) |
153 |
134 152
|
syl |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) = -u 1 ) |
154 |
27 11 13
|
psgnevpm |
|- ( ( N e. Fin /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` p ) = 1 ) |
155 |
26 154
|
sylan |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` p ) = 1 ) |
156 |
153 155
|
oveq12d |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) x. ( ( pmSgn ` N ) ` p ) ) = ( -u 1 x. 1 ) ) |
157 |
|
neg1cn |
|- -u 1 e. CC |
158 |
157
|
mulid1i |
|- ( -u 1 x. 1 ) = -u 1 |
159 |
156 158
|
eqtrdi |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmSgn ` N ) ` ( ( pmTrsp ` N ) ` { I , J } ) ) x. ( ( pmSgn ` N ) ` p ) ) = -u 1 ) |
160 |
151 159
|
eqtrd |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( pmSgn ` N ) ` ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) = -u 1 ) |
161 |
27 11 13
|
psgnodpmr |
|- ( ( N e. Fin /\ ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( Base ` ( SymGrp ` N ) ) /\ ( ( pmSgn ` N ) ` ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) = -u 1 ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
162 |
69 139 160 161
|
syl3anc |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
163 |
129 162
|
chvarvv |
|- ( ( ph /\ q e. ( pmEven ` N ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) |
164 |
|
eqidd |
|- ( ph -> ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) = ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) |
165 |
|
eqidd |
|- ( ph -> ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) = ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
166 |
|
fveq1 |
|- ( p = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) -> ( p ` c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) ) |
167 |
166
|
oveq1d |
|- ( p = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) -> ( ( p ` c ) X c ) = ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) |
168 |
167
|
mpteq2dv |
|- ( p = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) -> ( c e. N |-> ( ( p ` c ) X c ) ) = ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) |
169 |
168
|
oveq2d |
|- ( p = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) ) |
170 |
163 164 165 169
|
fmptco |
|- ( ph -> ( ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) o. ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) = ( q e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) ) ) |
171 |
|
oveq2 |
|- ( q = p -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ) |
172 |
171
|
fveq1d |
|- ( q = p -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) ) |
173 |
172
|
oveq1d |
|- ( q = p -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) = ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) |
174 |
173
|
mpteq2dv |
|- ( q = p -> ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) = ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) |
175 |
174
|
oveq2d |
|- ( q = p -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) ) |
176 |
175
|
cbvmptv |
|- ( q e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) ) |
177 |
176
|
a1i |
|- ( ph -> ( q e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ` c ) X c ) ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) ) ) |
178 |
135
|
adantr |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) ) |
179 |
136
|
adantr |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> p e. ( Base ` ( SymGrp ` N ) ) ) |
180 |
27 11 137
|
symgov |
|- ( ( ( ( pmTrsp ` N ) ` { I , J } ) e. ( Base ` ( SymGrp ` N ) ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) = ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ) |
181 |
178 179 180
|
syl2anc |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) = ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ) |
182 |
181
|
fveq1d |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ` c ) ) |
183 |
75 49
|
sylan2 |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> p : N --> N ) |
184 |
|
fvco3 |
|- ( ( p : N --> N /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ` c ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) ) |
185 |
183 184
|
sylan |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) o. p ) ` c ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) ) |
186 |
182 185
|
eqtrd |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) ) |
187 |
186
|
oveq1d |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) ) |
188 |
116
|
pmtrprfv |
|- ( ( N e. Fin /\ ( I e. N /\ J e. N /\ I =/= J ) ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) = J ) |
189 |
26 7 8 9 188
|
syl13anc |
|- ( ph -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) = J ) |
190 |
189
|
ad2antrr |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) = J ) |
191 |
190
|
oveq1d |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) X c ) = ( J X c ) ) |
192 |
|
oveq2 |
|- ( a = c -> ( I X a ) = ( I X c ) ) |
193 |
|
oveq2 |
|- ( a = c -> ( J X a ) = ( J X c ) ) |
194 |
192 193
|
eqeq12d |
|- ( a = c -> ( ( I X a ) = ( J X a ) <-> ( I X c ) = ( J X c ) ) ) |
195 |
10
|
ad2antrr |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> A. a e. N ( I X a ) = ( J X a ) ) |
196 |
|
simpr |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> c e. N ) |
197 |
194 195 196
|
rspcdva |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( I X c ) = ( J X c ) ) |
198 |
191 197
|
eqtr4d |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) X c ) = ( I X c ) ) |
199 |
|
fveq2 |
|- ( ( p ` c ) = I -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) ) |
200 |
199
|
oveq1d |
|- ( ( p ` c ) = I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) X c ) ) |
201 |
|
oveq1 |
|- ( ( p ` c ) = I -> ( ( p ` c ) X c ) = ( I X c ) ) |
202 |
200 201
|
eqeq12d |
|- ( ( p ` c ) = I -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) <-> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` I ) X c ) = ( I X c ) ) ) |
203 |
198 202
|
syl5ibrcom |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) = I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) |
204 |
|
prcom |
|- { I , J } = { J , I } |
205 |
204
|
fveq2i |
|- ( ( pmTrsp ` N ) ` { I , J } ) = ( ( pmTrsp ` N ) ` { J , I } ) |
206 |
205
|
fveq1i |
|- ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) = ( ( ( pmTrsp ` N ) ` { J , I } ) ` J ) |
207 |
9
|
necomd |
|- ( ph -> J =/= I ) |
208 |
116
|
pmtrprfv |
|- ( ( N e. Fin /\ ( J e. N /\ I e. N /\ J =/= I ) ) -> ( ( ( pmTrsp ` N ) ` { J , I } ) ` J ) = I ) |
209 |
26 8 7 207 208
|
syl13anc |
|- ( ph -> ( ( ( pmTrsp ` N ) ` { J , I } ) ` J ) = I ) |
210 |
206 209
|
eqtrid |
|- ( ph -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) = I ) |
211 |
210
|
oveq1d |
|- ( ph -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) = ( I X c ) ) |
212 |
211
|
ad2antrr |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) = ( I X c ) ) |
213 |
212 197
|
eqtrd |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) = ( J X c ) ) |
214 |
|
fveq2 |
|- ( ( p ` c ) = J -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) = ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) ) |
215 |
214
|
oveq1d |
|- ( ( p ` c ) = J -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) ) |
216 |
|
oveq1 |
|- ( ( p ` c ) = J -> ( ( p ` c ) X c ) = ( J X c ) ) |
217 |
215 216
|
eqeq12d |
|- ( ( p ` c ) = J -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) <-> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` J ) X c ) = ( J X c ) ) ) |
218 |
213 217
|
syl5ibrcom |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) = J -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) |
219 |
218
|
a1dd |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) = J -> ( ( p ` c ) =/= I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) ) |
220 |
|
neanior |
|- ( ( ( p ` c ) =/= J /\ ( p ` c ) =/= I ) <-> -. ( ( p ` c ) = J \/ ( p ` c ) = I ) ) |
221 |
|
elpri |
|- ( ( p ` c ) e. { I , J } -> ( ( p ` c ) = I \/ ( p ` c ) = J ) ) |
222 |
221
|
orcomd |
|- ( ( p ` c ) e. { I , J } -> ( ( p ` c ) = J \/ ( p ` c ) = I ) ) |
223 |
222
|
con3i |
|- ( -. ( ( p ` c ) = J \/ ( p ` c ) = I ) -> -. ( p ` c ) e. { I , J } ) |
224 |
220 223
|
sylbi |
|- ( ( ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> -. ( p ` c ) e. { I , J } ) |
225 |
224
|
3adant1 |
|- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> -. ( p ` c ) e. { I , J } ) |
226 |
116
|
pmtrmvd |
|- ( ( N e. Fin /\ { I , J } C_ N /\ { I , J } ~~ 2o ) -> dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) = { I , J } ) |
227 |
26 113 115 226
|
syl3anc |
|- ( ph -> dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) = { I , J } ) |
228 |
227
|
ad2antrr |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) = { I , J } ) |
229 |
228
|
3ad2ant1 |
|- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) = { I , J } ) |
230 |
225 229
|
neleqtrrd |
|- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> -. ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) ) |
231 |
116
|
pmtrf |
|- ( ( N e. Fin /\ { I , J } C_ N /\ { I , J } ~~ 2o ) -> ( ( pmTrsp ` N ) ` { I , J } ) : N --> N ) |
232 |
26 113 115 231
|
syl3anc |
|- ( ph -> ( ( pmTrsp ` N ) ` { I , J } ) : N --> N ) |
233 |
232
|
ffnd |
|- ( ph -> ( ( pmTrsp ` N ) ` { I , J } ) Fn N ) |
234 |
233
|
ad2antrr |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( pmTrsp ` N ) ` { I , J } ) Fn N ) |
235 |
183
|
ffvelrnda |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( p ` c ) e. N ) |
236 |
|
fnelnfp |
|- ( ( ( ( pmTrsp ` N ) ` { I , J } ) Fn N /\ ( p ` c ) e. N ) -> ( ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) <-> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) =/= ( p ` c ) ) ) |
237 |
234 235 236
|
syl2anc |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) <-> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) =/= ( p ` c ) ) ) |
238 |
237
|
3ad2ant1 |
|- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> ( ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) <-> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) =/= ( p ` c ) ) ) |
239 |
238
|
necon2bbid |
|- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) = ( p ` c ) <-> -. ( p ` c ) e. dom ( ( ( pmTrsp ` N ) ` { I , J } ) \ _I ) ) ) |
240 |
230 239
|
mpbird |
|- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) = ( p ` c ) ) |
241 |
240
|
oveq1d |
|- ( ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) /\ ( p ` c ) =/= J /\ ( p ` c ) =/= I ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) |
242 |
241
|
3exp |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) =/= J -> ( ( p ` c ) =/= I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) ) |
243 |
219 242
|
pm2.61dne |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( p ` c ) =/= I -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) ) |
244 |
203 243
|
pm2.61dne |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( pmTrsp ` N ) ` { I , J } ) ` ( p ` c ) ) X c ) = ( ( p ` c ) X c ) ) |
245 |
187 244
|
eqtrd |
|- ( ( ( ph /\ p e. ( pmEven ` N ) ) /\ c e. N ) -> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) = ( ( p ` c ) X c ) ) |
246 |
245
|
mpteq2dva |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) = ( c e. N |-> ( ( p ` c ) X c ) ) ) |
247 |
246
|
oveq2d |
|- ( ( ph /\ p e. ( pmEven ` N ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) = ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) |
248 |
247
|
mpteq2dva |
|- ( ph -> ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) p ) ` c ) X c ) ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
249 |
170 177 248
|
3eqtrd |
|- ( ph -> ( ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) o. ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) = ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |
250 |
249
|
oveq2d |
|- ( ph -> ( R gsum ( ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) o. ( q e. ( pmEven ` N ) |-> ( ( ( pmTrsp ` N ) ` { I , J } ) ( +g ` ( SymGrp ` N ) ) q ) ) ) ) = ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
251 |
124 250
|
eqtrd |
|- ( ph -> ( R gsum ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) = ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) |
252 |
251
|
fveq2d |
|- ( ph -> ( ( invg ` R ) ` ( R gsum ( p e. ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) = ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) |
253 |
105 111 252
|
3eqtrd |
|- ( ph -> ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) = ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) |
254 |
82 253
|
oveq12d |
|- ( ph -> ( ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) ) ( +g ` R ) ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) ) = ( ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ( +g ` R ) ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) ) |
255 |
59
|
a1i |
|- ( ph -> ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) ) |
256 |
29 255
|
ssfid |
|- ( ph -> ( pmEven ` N ) e. Fin ) |
257 |
76
|
ralrimiva |
|- ( ph -> A. p e. ( pmEven ` N ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) e. ( Base ` R ) ) |
258 |
18 23 256 257
|
gsummptcl |
|- ( ph -> ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) e. ( Base ` R ) ) |
259 |
18 19 4 89
|
grprinv |
|- ( ( R e. Grp /\ ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) e. ( Base ` R ) ) -> ( ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ( +g ` R ) ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) = .0. ) |
260 |
99 258 259
|
syl2anc |
|- ( ph -> ( ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ( +g ` R ) ( ( invg ` R ) ` ( R gsum ( p e. ( pmEven ` N ) |-> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) ) ) = .0. ) |
261 |
254 260
|
eqtrd |
|- ( ph -> ( ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( pmEven ` N ) ) ) ( +g ` R ) ( R gsum ( ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) X c ) ) ) ) ) |` ( ( Base ` ( SymGrp ` N ) ) \ ( pmEven ` N ) ) ) ) ) = .0. ) |
262 |
17 65 261
|
3eqtrd |
|- ( ph -> ( D ` X ) = .0. ) |