| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evpmodpmf1o.s |
|- S = ( SymGrp ` D ) |
| 2 |
|
evpmodpmf1o.p |
|- P = ( Base ` S ) |
| 3 |
|
pmtrodpm.t |
|- T = ran ( pmTrsp ` D ) |
| 4 |
|
simpl |
|- ( ( D e. Fin /\ F e. T ) -> D e. Fin ) |
| 5 |
3 1 2
|
symgtrf |
|- T C_ P |
| 6 |
5
|
sseli |
|- ( F e. T -> F e. P ) |
| 7 |
6
|
adantl |
|- ( ( D e. Fin /\ F e. T ) -> F e. P ) |
| 8 |
|
eqid |
|- ( pmSgn ` D ) = ( pmSgn ` D ) |
| 9 |
1 3 8
|
psgnpmtr |
|- ( F e. T -> ( ( pmSgn ` D ) ` F ) = -u 1 ) |
| 10 |
9
|
adantl |
|- ( ( D e. Fin /\ F e. T ) -> ( ( pmSgn ` D ) ` F ) = -u 1 ) |
| 11 |
1 2 8
|
psgnodpmr |
|- ( ( D e. Fin /\ F e. P /\ ( ( pmSgn ` D ) ` F ) = -u 1 ) -> F e. ( P \ ( pmEven ` D ) ) ) |
| 12 |
4 7 10 11
|
syl3anc |
|- ( ( D e. Fin /\ F e. T ) -> F e. ( P \ ( pmEven ` D ) ) ) |