| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evpmodpmf1o.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 2 |
|
evpmodpmf1o.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
| 3 |
|
pmtrodpm.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
| 4 |
|
simpl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇 ) → 𝐷 ∈ Fin ) |
| 5 |
3 1 2
|
symgtrf |
⊢ 𝑇 ⊆ 𝑃 |
| 6 |
5
|
sseli |
⊢ ( 𝐹 ∈ 𝑇 → 𝐹 ∈ 𝑃 ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ 𝑃 ) |
| 8 |
|
eqid |
⊢ ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 ) |
| 9 |
1 3 8
|
psgnpmtr |
⊢ ( 𝐹 ∈ 𝑇 → ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) = - 1 ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇 ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) = - 1 ) |
| 11 |
1 2 8
|
psgnodpmr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ ( ( pmSgn ‘ 𝐷 ) ‘ 𝐹 ) = - 1 ) → 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |
| 12 |
4 7 10 11
|
syl3anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝐷 ) ) ) |