Metamath Proof Explorer


Theorem pmtrodpm

Description: A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmodpmf1o.s S=SymGrpD
evpmodpmf1o.p P=BaseS
pmtrodpm.t T=ranpmTrspD
Assertion pmtrodpm DFinFTFPpmEvenD

Proof

Step Hyp Ref Expression
1 evpmodpmf1o.s S=SymGrpD
2 evpmodpmf1o.p P=BaseS
3 pmtrodpm.t T=ranpmTrspD
4 simpl DFinFTDFin
5 3 1 2 symgtrf TP
6 5 sseli FTFP
7 6 adantl DFinFTFP
8 eqid pmSgnD=pmSgnD
9 1 3 8 psgnpmtr FTpmSgnDF=1
10 9 adantl DFinFTpmSgnDF=1
11 1 2 8 psgnodpmr DFinFPpmSgnDF=1FPpmEvenD
12 4 7 10 11 syl3anc DFinFTFPpmEvenD