Metamath Proof Explorer


Theorem psgnfix1

Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019)

Ref Expression
Hypotheses psgnfix.p P=BaseSymGrpN
psgnfix.t T=ranpmTrspNK
psgnfix.s S=SymGrpNK
Assertion psgnfix1 NFinKNQqP|qK=KwWordTQNK=Sw

Proof

Step Hyp Ref Expression
1 psgnfix.p P=BaseSymGrpN
2 psgnfix.t T=ranpmTrspNK
3 psgnfix.s S=SymGrpNK
4 eqid qP|qK=K=qP|qK=K
5 3 fveq2i BaseS=BaseSymGrpNK
6 eqid NK=NK
7 1 4 5 6 symgfixelsi KNQqP|qK=KQNKBaseS
8 7 adantll NFinKNQqP|qK=KQNKBaseS
9 diffi NFinNKFin
10 9 ad2antrr NFinKNQqP|qK=KNKFin
11 eqid BaseS=BaseS
12 3 11 2 psgnfitr NKFinQNKBaseSwWordTQNK=Sw
13 10 12 syl NFinKNQqP|qK=KQNKBaseSwWordTQNK=Sw
14 8 13 mpbid NFinKNQqP|qK=KwWordTQNK=Sw
15 14 ex NFinKNQqP|qK=KwWordTQNK=Sw