Metamath Proof Explorer


Theorem psgnfix1

Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019)

Ref Expression
Hypotheses psgnfix.p
|- P = ( Base ` ( SymGrp ` N ) )
psgnfix.t
|- T = ran ( pmTrsp ` ( N \ { K } ) )
psgnfix.s
|- S = ( SymGrp ` ( N \ { K } ) )
Assertion psgnfix1
|- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) )

Proof

Step Hyp Ref Expression
1 psgnfix.p
 |-  P = ( Base ` ( SymGrp ` N ) )
2 psgnfix.t
 |-  T = ran ( pmTrsp ` ( N \ { K } ) )
3 psgnfix.s
 |-  S = ( SymGrp ` ( N \ { K } ) )
4 eqid
 |-  { q e. P | ( q ` K ) = K } = { q e. P | ( q ` K ) = K }
5 3 fveq2i
 |-  ( Base ` S ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) )
6 eqid
 |-  ( N \ { K } ) = ( N \ { K } )
7 1 4 5 6 symgfixelsi
 |-  ( ( K e. N /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` S ) )
8 7 adantll
 |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` S ) )
9 diffi
 |-  ( N e. Fin -> ( N \ { K } ) e. Fin )
10 9 ad2antrr
 |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( N \ { K } ) e. Fin )
11 eqid
 |-  ( Base ` S ) = ( Base ` S )
12 3 11 2 psgnfitr
 |-  ( ( N \ { K } ) e. Fin -> ( ( Q |` ( N \ { K } ) ) e. ( Base ` S ) <-> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) )
13 10 12 syl
 |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( Q |` ( N \ { K } ) ) e. ( Base ` S ) <-> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) )
14 8 13 mpbid
 |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) )
15 14 ex
 |-  ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) )