| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfix.p |  |-  P = ( Base ` ( SymGrp ` N ) ) | 
						
							| 2 |  | psgnfix.t |  |-  T = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 3 |  | psgnfix.s |  |-  S = ( SymGrp ` ( N \ { K } ) ) | 
						
							| 4 |  | eqid |  |-  { q e. P | ( q ` K ) = K } = { q e. P | ( q ` K ) = K } | 
						
							| 5 | 3 | fveq2i |  |-  ( Base ` S ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | 
						
							| 6 |  | eqid |  |-  ( N \ { K } ) = ( N \ { K } ) | 
						
							| 7 | 1 4 5 6 | symgfixelsi |  |-  ( ( K e. N /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` S ) ) | 
						
							| 8 | 7 | adantll |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` S ) ) | 
						
							| 9 |  | diffi |  |-  ( N e. Fin -> ( N \ { K } ) e. Fin ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( N \ { K } ) e. Fin ) | 
						
							| 11 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 12 | 3 11 2 | psgnfitr |  |-  ( ( N \ { K } ) e. Fin -> ( ( Q |` ( N \ { K } ) ) e. ( Base ` S ) <-> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( Q |` ( N \ { K } ) ) e. ( Base ` S ) <-> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) ) | 
						
							| 14 | 8 13 | mpbid |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) | 
						
							| 15 | 14 | ex |  |-  ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) ) |