| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfix.p |  |-  P = ( Base ` ( SymGrp ` N ) ) | 
						
							| 2 |  | psgnfix.t |  |-  T = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 3 |  | psgnfix.s |  |-  S = ( SymGrp ` ( N \ { K } ) ) | 
						
							| 4 |  | psgnfix.z |  |-  Z = ( SymGrp ` N ) | 
						
							| 5 |  | psgnfix.r |  |-  R = ran ( pmTrsp ` N ) | 
						
							| 6 |  | elrabi |  |-  ( Q e. { q e. P | ( q ` K ) = K } -> Q e. P ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> Q e. P ) | 
						
							| 8 | 4 | fveq2i |  |-  ( Base ` Z ) = ( Base ` ( SymGrp ` N ) ) | 
						
							| 9 | 1 8 | eqtr4i |  |-  P = ( Base ` Z ) | 
						
							| 10 | 4 9 5 | psgnfitr |  |-  ( N e. Fin -> ( Q e. P <-> E. w e. Word R Q = ( Z gsum w ) ) ) | 
						
							| 11 | 10 | bicomd |  |-  ( N e. Fin -> ( E. w e. Word R Q = ( Z gsum w ) <-> Q e. P ) ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. w e. Word R Q = ( Z gsum w ) <-> Q e. P ) ) | 
						
							| 13 | 7 12 | mpbird |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. w e. Word R Q = ( Z gsum w ) ) | 
						
							| 14 | 13 | ex |  |-  ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word R Q = ( Z gsum w ) ) ) |