| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfix.p | ⊢ 𝑃  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 2 |  | psgnfix.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 3 |  | psgnfix.s | ⊢ 𝑆  =  ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 4 |  | psgnfix.z | ⊢ 𝑍  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 5 |  | psgnfix.r | ⊢ 𝑅  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 6 |  | elrabi | ⊢ ( 𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  →  𝑄  ∈  𝑃 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  𝑄  ∈  𝑃 ) | 
						
							| 8 | 4 | fveq2i | ⊢ ( Base ‘ 𝑍 )  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 9 | 1 8 | eqtr4i | ⊢ 𝑃  =  ( Base ‘ 𝑍 ) | 
						
							| 10 | 4 9 5 | psgnfitr | ⊢ ( 𝑁  ∈  Fin  →  ( 𝑄  ∈  𝑃  ↔  ∃ 𝑤  ∈  Word  𝑅 𝑄  =  ( 𝑍  Σg  𝑤 ) ) ) | 
						
							| 11 | 10 | bicomd | ⊢ ( 𝑁  ∈  Fin  →  ( ∃ 𝑤  ∈  Word  𝑅 𝑄  =  ( 𝑍  Σg  𝑤 )  ↔  𝑄  ∈  𝑃 ) ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  ( ∃ 𝑤  ∈  Word  𝑅 𝑄  =  ( 𝑍  Σg  𝑤 )  ↔  𝑄  ∈  𝑃 ) ) | 
						
							| 13 | 7 12 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  ∃ 𝑤  ∈  Word  𝑅 𝑄  =  ( 𝑍  Σg  𝑤 ) ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( 𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  →  ∃ 𝑤  ∈  Word  𝑅 𝑄  =  ( 𝑍  Σg  𝑤 ) ) ) |