| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfix.p | ⊢ 𝑃  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 2 |  | psgnfix.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 3 |  | psgnfix.s | ⊢ 𝑆  =  ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 4 |  | psgnfix.z | ⊢ 𝑍  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 5 |  | psgnfix.r | ⊢ 𝑅  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 6 |  | elrabi | ⊢ ( 𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  →  𝑄  ∈  𝑃 ) | 
						
							| 7 |  | eqid | ⊢ ( SymGrp ‘ 𝑁 )  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 8 | 7 1 | symgbasf | ⊢ ( 𝑄  ∈  𝑃  →  𝑄 : 𝑁 ⟶ 𝑁 ) | 
						
							| 9 |  | ffn | ⊢ ( 𝑄 : 𝑁 ⟶ 𝑁  →  𝑄  Fn  𝑁 ) | 
						
							| 10 | 6 8 9 | 3syl | ⊢ ( 𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  →  𝑄  Fn  𝑁 ) | 
						
							| 11 | 10 | ad3antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  𝑄  Fn  𝑁 ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  𝑁  ∈  Fin ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  𝑁  ∈  Fin ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 15 |  | simp1 | ⊢ ( ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) )  →  𝑈  ∈  Word  𝑅 ) | 
						
							| 16 | 4 | eqcomi | ⊢ ( SymGrp ‘ 𝑁 )  =  𝑍 | 
						
							| 17 | 16 | fveq2i | ⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) )  =  ( Base ‘ 𝑍 ) | 
						
							| 18 | 1 17 | eqtri | ⊢ 𝑃  =  ( Base ‘ 𝑍 ) | 
						
							| 19 | 4 18 5 | gsmtrcl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑈  ∈  Word  𝑅 )  →  ( 𝑍  Σg  𝑈 )  ∈  𝑃 ) | 
						
							| 20 | 14 15 19 | syl2an | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( 𝑍  Σg  𝑈 )  ∈  𝑃 ) | 
						
							| 21 | 7 1 | symgbasf | ⊢ ( ( 𝑍  Σg  𝑈 )  ∈  𝑃  →  ( 𝑍  Σg  𝑈 ) : 𝑁 ⟶ 𝑁 ) | 
						
							| 22 |  | ffn | ⊢ ( ( 𝑍  Σg  𝑈 ) : 𝑁 ⟶ 𝑁  →  ( 𝑍  Σg  𝑈 )  Fn  𝑁 ) | 
						
							| 23 | 20 21 22 | 3syl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( 𝑍  Σg  𝑈 )  Fn  𝑁 ) | 
						
							| 24 | 12 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  𝐾  ∈  𝑁 ) | 
						
							| 26 | 25 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  𝐾  ∈  𝑁 ) | 
						
							| 27 |  | eqid | ⊢ ( Base ‘ 𝑍 )  =  ( Base ‘ 𝑍 ) | 
						
							| 28 | 5 4 27 | symgtrf | ⊢ 𝑅  ⊆  ( Base ‘ 𝑍 ) | 
						
							| 29 |  | sswrd | ⊢ ( 𝑅  ⊆  ( Base ‘ 𝑍 )  →  Word  𝑅  ⊆  Word  ( Base ‘ 𝑍 ) ) | 
						
							| 30 | 29 | sseld | ⊢ ( 𝑅  ⊆  ( Base ‘ 𝑍 )  →  ( 𝑈  ∈  Word  𝑅  →  𝑈  ∈  Word  ( Base ‘ 𝑍 ) ) ) | 
						
							| 31 | 28 30 | ax-mp | ⊢ ( 𝑈  ∈  Word  𝑅  →  𝑈  ∈  Word  ( Base ‘ 𝑍 ) ) | 
						
							| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) )  →  𝑈  ∈  Word  ( Base ‘ 𝑍 ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  𝑈  ∈  Word  ( Base ‘ 𝑍 ) ) | 
						
							| 34 | 24 26 33 | 3jca | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁  ∧  𝑈  ∈  Word  ( Base ‘ 𝑍 ) ) ) | 
						
							| 35 |  | simpl | ⊢ ( ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) )  →  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) | 
						
							| 36 | 35 | ralimi | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) | 
						
							| 37 | 36 | 3ad2ant3 | ⊢ ( ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) | 
						
							| 39 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑊 )  →  ( 0 ..^ ( ♯ ‘ 𝑈 ) )  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 40 | 39 | eqcoms | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  →  ( 0 ..^ ( ♯ ‘ 𝑈 ) )  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 41 | 40 | raleqdv | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 44 | 38 43 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) | 
						
							| 45 | 4 27 | gsmsymgrfix | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁  ∧  𝑈  ∈  Word  ( Base ‘ 𝑍 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑍  Σg  𝑈 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 46 | 34 44 45 | sylc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( ( 𝑍  Σg  𝑈 ) ‘ 𝐾 )  =  𝐾 ) | 
						
							| 47 | 46 | eqcomd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  𝐾  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝐾 ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  =  𝐾 )  →  𝐾  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝐾 ) ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( 𝑄 ‘ 𝑘 )  =  ( 𝑄 ‘ 𝐾 ) ) | 
						
							| 50 |  | fveq1 | ⊢ ( 𝑞  =  𝑄  →  ( 𝑞 ‘ 𝐾 )  =  ( 𝑄 ‘ 𝐾 ) ) | 
						
							| 51 | 50 | eqeq1d | ⊢ ( 𝑞  =  𝑄  →  ( ( 𝑞 ‘ 𝐾 )  =  𝐾  ↔  ( 𝑄 ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 52 | 51 | elrab | ⊢ ( 𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  ↔  ( 𝑄  ∈  𝑃  ∧  ( 𝑄 ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 53 | 52 | simprbi | ⊢ ( 𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  →  ( 𝑄 ‘ 𝐾 )  =  𝐾 ) | 
						
							| 54 | 53 | ad3antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( 𝑄 ‘ 𝐾 )  =  𝐾 ) | 
						
							| 55 | 49 54 | sylan9eqr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  =  𝐾 )  →  ( 𝑄 ‘ 𝑘 )  =  𝐾 ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑘 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝐾 ) ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  =  𝐾 )  →  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑘 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝐾 ) ) | 
						
							| 58 | 48 55 57 | 3eqtr4d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  =  𝐾 )  →  ( 𝑄 ‘ 𝑘 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑘 ) ) | 
						
							| 59 | 58 | ex | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( 𝑘  =  𝐾  →  ( 𝑄 ‘ 𝑘 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑘 ) ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑘  =  𝐾  →  ( 𝑄 ‘ 𝑘 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑘 ) ) ) | 
						
							| 61 | 60 | com12 | ⊢ ( 𝑘  =  𝐾  →  ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑄 ‘ 𝑘 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑘 ) ) ) | 
						
							| 62 |  | fveq1 | ⊢ ( ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  →  ( ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) ) ‘ 𝑘 )  =  ( ( 𝑆  Σg  𝑊 ) ‘ 𝑘 ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) )  →  ( ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) ) ‘ 𝑘 )  =  ( ( 𝑆  Σg  𝑊 ) ‘ 𝑘 ) ) | 
						
							| 64 | 63 | ad3antlr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 )  →  ( ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) ) ‘ 𝑘 )  =  ( ( 𝑆  Σg  𝑊 ) ‘ 𝑘 ) ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( ¬  𝑘  =  𝐾  ∧  ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 ) )  →  ( ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) ) ‘ 𝑘 )  =  ( ( 𝑆  Σg  𝑊 ) ‘ 𝑘 ) ) | 
						
							| 66 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑘  ∈  𝑁 )  →  𝑘  ∈  𝑁 ) | 
						
							| 67 |  | neqne | ⊢ ( ¬  𝑘  =  𝐾  →  𝑘  ≠  𝐾 ) | 
						
							| 68 | 66 67 | anim12i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑘  ∈  𝑁 )  ∧  ¬  𝑘  =  𝐾 )  →  ( 𝑘  ∈  𝑁  ∧  𝑘  ≠  𝐾 ) ) | 
						
							| 69 |  | eldifsn | ⊢ ( 𝑘  ∈  ( 𝑁  ∖  { 𝐾 } )  ↔  ( 𝑘  ∈  𝑁  ∧  𝑘  ≠  𝐾 ) ) | 
						
							| 70 | 68 69 | sylibr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑘  ∈  𝑁 )  ∧  ¬  𝑘  =  𝐾 )  →  𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 71 | 70 | fvresd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑘  ∈  𝑁 )  ∧  ¬  𝑘  =  𝐾 )  →  ( ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) ) ‘ 𝑘 )  =  ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 72 | 71 | exp31 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( 𝑘  ∈  𝑁  →  ( ¬  𝑘  =  𝐾  →  ( ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) ) ‘ 𝑘 )  =  ( 𝑄 ‘ 𝑘 ) ) ) ) | 
						
							| 73 | 72 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( 𝑘  ∈  𝑁  →  ( ¬  𝑘  =  𝐾  →  ( ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) ) ‘ 𝑘 )  =  ( 𝑄 ‘ 𝑘 ) ) ) ) | 
						
							| 74 | 73 | imp | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 )  →  ( ¬  𝑘  =  𝐾  →  ( ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) ) ‘ 𝑘 )  =  ( 𝑄 ‘ 𝑘 ) ) ) | 
						
							| 75 | 74 | impcom | ⊢ ( ( ¬  𝑘  =  𝐾  ∧  ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 ) )  →  ( ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) ) ‘ 𝑘 )  =  ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 76 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑆  Σg  𝑊 ) ‘ 𝑛 )  =  ( ( 𝑆  Σg  𝑊 ) ‘ 𝑘 ) ) | 
						
							| 77 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑘 ) ) | 
						
							| 78 | 76 77 | eqeq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ( 𝑆  Σg  𝑊 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 )  ↔  ( ( 𝑆  Σg  𝑊 ) ‘ 𝑘 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑘 ) ) ) | 
						
							| 79 |  | diffi | ⊢ ( 𝑁  ∈  Fin  →  ( 𝑁  ∖  { 𝐾 } )  ∈  Fin ) | 
						
							| 80 | 79 | ancri | ⊢ ( 𝑁  ∈  Fin  →  ( ( 𝑁  ∖  { 𝐾 } )  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ( 𝑁  ∖  { 𝐾 } )  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 82 | 81 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( ( 𝑁  ∖  { 𝐾 } )  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 83 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 84 | 2 3 83 | symgtrf | ⊢ 𝑇  ⊆  ( Base ‘ 𝑆 ) | 
						
							| 85 |  | sswrd | ⊢ ( 𝑇  ⊆  ( Base ‘ 𝑆 )  →  Word  𝑇  ⊆  Word  ( Base ‘ 𝑆 ) ) | 
						
							| 86 | 85 | sseld | ⊢ ( 𝑇  ⊆  ( Base ‘ 𝑆 )  →  ( 𝑊  ∈  Word  𝑇  →  𝑊  ∈  Word  ( Base ‘ 𝑆 ) ) ) | 
						
							| 87 | 84 86 | ax-mp | ⊢ ( 𝑊  ∈  Word  𝑇  →  𝑊  ∈  Word  ( Base ‘ 𝑆 ) ) | 
						
							| 88 | 87 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  →  𝑊  ∈  Word  ( Base ‘ 𝑆 ) ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  𝑊  ∈  Word  ( Base ‘ 𝑆 ) ) | 
						
							| 90 |  | simpr2 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) ) | 
						
							| 91 | 89 33 90 | 3jca | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( 𝑊  ∈  Word  ( Base ‘ 𝑆 )  ∧  𝑈  ∈  Word  ( Base ‘ 𝑍 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) ) ) | 
						
							| 92 | 82 91 | jca | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( ( ( 𝑁  ∖  { 𝐾 } )  ∈  Fin  ∧  𝑁  ∈  Fin )  ∧  ( 𝑊  ∈  Word  ( Base ‘ 𝑆 )  ∧  𝑈  ∈  Word  ( Base ‘ 𝑍 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) ) ) ) | 
						
							| 93 | 92 | ad2antrl | ⊢ ( ( ¬  𝑘  =  𝐾  ∧  ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 ) )  →  ( ( ( 𝑁  ∖  { 𝐾 } )  ∈  Fin  ∧  𝑁  ∈  Fin )  ∧  ( 𝑊  ∈  Word  ( Base ‘ 𝑆 )  ∧  𝑈  ∈  Word  ( Base ‘ 𝑍 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) ) ) ) | 
						
							| 94 |  | simpr | ⊢ ( ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) )  →  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 95 | 94 | ralimi | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 96 | 95 | 3ad2ant3 | ⊢ ( ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 97 | 96 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 98 | 97 | ad2antrl | ⊢ ( ( ¬  𝑘  =  𝐾  ∧  ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 99 |  | incom | ⊢ ( ( 𝑁  ∖  { 𝐾 } )  ∩  𝑁 )  =  ( 𝑁  ∩  ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 100 |  | indif | ⊢ ( 𝑁  ∩  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑁  ∖  { 𝐾 } ) | 
						
							| 101 | 99 100 | eqtri | ⊢ ( ( 𝑁  ∖  { 𝐾 } )  ∩  𝑁 )  =  ( 𝑁  ∖  { 𝐾 } ) | 
						
							| 102 | 101 | eqcomi | ⊢ ( 𝑁  ∖  { 𝐾 } )  =  ( ( 𝑁  ∖  { 𝐾 } )  ∩  𝑁 ) | 
						
							| 103 | 3 83 4 27 102 | gsmsymgreq | ⊢ ( ( ( ( 𝑁  ∖  { 𝐾 } )  ∈  Fin  ∧  𝑁  ∈  Fin )  ∧  ( 𝑊  ∈  Word  ( Base ‘ 𝑆 )  ∧  𝑈  ∈  Word  ( Base ‘ 𝑍 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑆  Σg  𝑊 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) ) | 
						
							| 104 | 93 98 103 | sylc | ⊢ ( ( ¬  𝑘  =  𝐾  ∧  ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 ) )  →  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑆  Σg  𝑊 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) | 
						
							| 105 | 67 | anim2i | ⊢ ( ( 𝑘  ∈  𝑁  ∧  ¬  𝑘  =  𝐾 )  →  ( 𝑘  ∈  𝑁  ∧  𝑘  ≠  𝐾 ) ) | 
						
							| 106 | 105 69 | sylibr | ⊢ ( ( 𝑘  ∈  𝑁  ∧  ¬  𝑘  =  𝐾 )  →  𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 107 | 106 | ex | ⊢ ( 𝑘  ∈  𝑁  →  ( ¬  𝑘  =  𝐾  →  𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ) ) | 
						
							| 108 | 107 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 )  →  ( ¬  𝑘  =  𝐾  →  𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ) ) | 
						
							| 109 | 108 | impcom | ⊢ ( ( ¬  𝑘  =  𝐾  ∧  ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 ) )  →  𝑘  ∈  ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 110 | 78 104 109 | rspcdva | ⊢ ( ( ¬  𝑘  =  𝐾  ∧  ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 ) )  →  ( ( 𝑆  Σg  𝑊 ) ‘ 𝑘 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑘 ) ) | 
						
							| 111 | 65 75 110 | 3eqtr3d | ⊢ ( ( ¬  𝑘  =  𝐾  ∧  ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 ) )  →  ( 𝑄 ‘ 𝑘 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑘 ) ) | 
						
							| 112 | 111 | ex | ⊢ ( ¬  𝑘  =  𝐾  →  ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑄 ‘ 𝑘 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑘 ) ) ) | 
						
							| 113 | 61 112 | pm2.61i | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑄 ‘ 𝑘 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑘 ) ) | 
						
							| 114 | 11 23 113 | eqfnfvd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  𝑄  =  ( 𝑍  Σg  𝑈 ) ) | 
						
							| 115 | 114 | exp31 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  ( ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) )  →  ( ( 𝑈  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) )  →  𝑄  =  ( 𝑍  Σg  𝑈 ) ) ) ) |