| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfix.p | ⊢ 𝑃  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | 
						
							| 2 |  | psgnfix.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 3 |  | psgnfix.s | ⊢ 𝑆  =  ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 4 |  | psgnfix.z | ⊢ 𝑍  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 5 |  | psgnfix.r | ⊢ 𝑅  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑟 )  ↔  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 ) ) ) | 
						
							| 8 | 6 | oveq2d | ⊢ ( 𝑤  =  𝑊  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ 𝑖 )  =  ( 𝑊 ‘ 𝑖 ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 12 | 11 | ralbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 13 | 12 | anbi2d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) )  ↔  ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) | 
						
							| 14 | 8 13 | raleqbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) | 
						
							| 15 | 7 14 | anbi12d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) )  ↔  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 16 | 15 | rexbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∃ 𝑟  ∈  Word  𝑅 ( ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) )  ↔  ∃ 𝑟  ∈  Word  𝑅 ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 17 | 16 | rspccv | ⊢ ( ∀ 𝑤  ∈  Word  𝑇 ∃ 𝑟  ∈  Word  𝑅 ( ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) )  →  ( 𝑊  ∈  Word  𝑇  →  ∃ 𝑟  ∈  Word  𝑅 ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 18 | 2 5 | pmtrdifwrdel2 | ⊢ ( 𝐾  ∈  𝑁  →  ∀ 𝑤  ∈  Word  𝑇 ∃ 𝑟  ∈  Word  𝑅 ( ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) | 
						
							| 19 | 17 18 | syl11 | ⊢ ( 𝑊  ∈  Word  𝑇  →  ( 𝐾  ∈  𝑁  →  ∃ 𝑟  ∈  Word  𝑅 ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 )  →  ( 𝐾  ∈  𝑁  →  ∃ 𝑟  ∈  Word  𝑅 ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 21 | 20 | com12 | ⊢ ( 𝐾  ∈  𝑁  →  ( ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 )  →  ∃ 𝑟  ∈  Word  𝑅 ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  ( ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 )  →  ∃ 𝑟  ∈  Word  𝑅 ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) )  →  ∃ 𝑟  ∈  Word  𝑅 ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) | 
						
							| 26 | 25 | ad3antlr | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) | 
						
							| 27 |  | simplll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) )  →  𝑁  ∈  Fin ) | 
						
							| 28 | 27 | ad2antlr | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  𝑁  ∈  Fin ) | 
						
							| 29 |  | simplll | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  𝑟  ∈  Word  𝑅 ) | 
						
							| 30 |  | simprr3 | ⊢ ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  →  𝑈  ∈  Word  𝑅 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  𝑈  ∈  Word  𝑅 ) | 
						
							| 32 |  | simplrl | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } ) ) | 
						
							| 33 |  | 3simpa | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 )  →  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) )  →  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) ) | 
						
							| 35 | 34 | ad2antlr | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) ) | 
						
							| 36 |  | simplrl | ⊢ ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 ) ) | 
						
							| 38 |  | simplrr | ⊢ ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 40 | 1 2 3 4 5 | psgndiflemB | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  ( ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) )  →  ( ( 𝑟  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) )  →  𝑄  =  ( 𝑍  Σg  𝑟 ) ) ) ) | 
						
							| 41 | 40 | imp31 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑟  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  𝑄  =  ( 𝑍  Σg  𝑟 ) ) | 
						
							| 42 | 41 | eqcomd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 ) ) )  ∧  ( 𝑟  ∈  Word  𝑅  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( 𝑍  Σg  𝑟 )  =  𝑄 ) | 
						
							| 43 | 32 35 29 37 39 42 | syl23anc | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  ( 𝑍  Σg  𝑟 )  =  𝑄 ) | 
						
							| 44 |  | id | ⊢ ( 𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 )  →  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) ) | 
						
							| 45 | 4 | eqcomi | ⊢ ( SymGrp ‘ 𝑁 )  =  𝑍 | 
						
							| 46 | 45 | oveq1i | ⊢ ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 )  =  ( 𝑍  Σg  𝑈 ) | 
						
							| 47 | 44 46 | eqtrdi | ⊢ ( 𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 )  →  𝑄  =  ( 𝑍  Σg  𝑈 ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  𝑄  =  ( 𝑍  Σg  𝑈 ) ) | 
						
							| 49 | 43 48 | eqtrd | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  ( 𝑍  Σg  𝑟 )  =  ( 𝑍  Σg  𝑈 ) ) | 
						
							| 50 | 4 5 28 29 31 49 | psgnuni | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑟 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) | 
						
							| 51 | 26 50 | eqtrd | ⊢ ( ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  ∧  𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) | 
						
							| 52 | 51 | ex | ⊢ ( ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  ∧  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) ) )  →  ( 𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 )  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) | 
						
							| 53 | 52 | ex | ⊢ ( ( 𝑟  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) )  →  ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) )  →  ( 𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 )  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) ) | 
						
							| 54 | 53 | rexlimiva | ⊢ ( ∃ 𝑟  ∈  Word  𝑅 ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑟 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) )  →  ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) )  →  ( 𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 )  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) ) | 
						
							| 55 | 23 54 | mpcom | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  ∧  ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 ) )  →  ( 𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 )  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) | 
						
							| 56 | 55 | ex | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  𝑄  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  ( ( 𝑊  ∈  Word  𝑇  ∧  ( 𝑄  ↾  ( 𝑁  ∖  { 𝐾 } ) )  =  ( 𝑆  Σg  𝑊 )  ∧  𝑈  ∈  Word  𝑅 )  →  ( 𝑄  =  ( ( SymGrp ‘ 𝑁 )  Σg  𝑈 )  →  ( - 1 ↑ ( ♯ ‘ 𝑊 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) ) |