| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfix.p |  |-  P = ( Base ` ( SymGrp ` N ) ) | 
						
							| 2 |  | psgnfix.t |  |-  T = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 3 |  | psgnfix.s |  |-  S = ( SymGrp ` ( N \ { K } ) ) | 
						
							| 4 |  | psgnfix.z |  |-  Z = ( SymGrp ` N ) | 
						
							| 5 |  | psgnfix.r |  |-  R = ran ( pmTrsp ` N ) | 
						
							| 6 |  | fveq2 |  |-  ( w = W -> ( # ` w ) = ( # ` W ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( w = W -> ( ( # ` w ) = ( # ` r ) <-> ( # ` W ) = ( # ` r ) ) ) | 
						
							| 8 | 6 | oveq2d |  |-  ( w = W -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 9 |  | fveq1 |  |-  ( w = W -> ( w ` i ) = ( W ` i ) ) | 
						
							| 10 | 9 | fveq1d |  |-  ( w = W -> ( ( w ` i ) ` n ) = ( ( W ` i ) ` n ) ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( w = W -> ( ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) <-> ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) | 
						
							| 12 | 11 | ralbidv |  |-  ( w = W -> ( A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) <-> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) | 
						
							| 13 | 12 | anbi2d |  |-  ( w = W -> ( ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) <-> ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) | 
						
							| 14 | 8 13 | raleqbidv |  |-  ( w = W -> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) | 
						
							| 15 | 7 14 | anbi12d |  |-  ( w = W -> ( ( ( # ` w ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) <-> ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) | 
						
							| 16 | 15 | rexbidv |  |-  ( w = W -> ( E. r e. Word R ( ( # ` w ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) <-> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) | 
						
							| 17 | 16 | rspccv |  |-  ( A. w e. Word T E. r e. Word R ( ( # ` w ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) -> ( W e. Word T -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) | 
						
							| 18 | 2 5 | pmtrdifwrdel2 |  |-  ( K e. N -> A. w e. Word T E. r e. Word R ( ( # ` w ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) | 
						
							| 19 | 17 18 | syl11 |  |-  ( W e. Word T -> ( K e. N -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) | 
						
							| 20 | 19 | 3ad2ant1 |  |-  ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> ( K e. N -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) | 
						
							| 21 | 20 | com12 |  |-  ( K e. N -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) | 
						
							| 22 | 21 | ad2antlr |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) | 
						
							| 24 |  | oveq2 |  |-  ( ( # ` W ) = ( # ` r ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` r ) ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` r ) ) ) | 
						
							| 26 | 25 | ad3antlr |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` r ) ) ) | 
						
							| 27 |  | simplll |  |-  ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> N e. Fin ) | 
						
							| 28 | 27 | ad2antlr |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> N e. Fin ) | 
						
							| 29 |  | simplll |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> r e. Word R ) | 
						
							| 30 |  | simprr3 |  |-  ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) -> U e. Word R ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> U e. Word R ) | 
						
							| 32 |  | simplrl |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) ) | 
						
							| 33 |  | 3simpa |  |-  ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) | 
						
							| 35 | 34 | ad2antlr |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) | 
						
							| 36 |  | simplrl |  |-  ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) -> ( # ` W ) = ( # ` r ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( # ` W ) = ( # ` r ) ) | 
						
							| 38 |  | simplrr |  |-  ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) | 
						
							| 40 | 1 2 3 4 5 | psgndiflemB |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) -> ( ( r e. Word R /\ ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) -> Q = ( Z gsum r ) ) ) ) | 
						
							| 41 | 40 | imp31 |  |-  ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( r e. Word R /\ ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) -> Q = ( Z gsum r ) ) | 
						
							| 42 | 41 | eqcomd |  |-  ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( r e. Word R /\ ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) -> ( Z gsum r ) = Q ) | 
						
							| 43 | 32 35 29 37 39 42 | syl23anc |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( Z gsum r ) = Q ) | 
						
							| 44 |  | id |  |-  ( Q = ( ( SymGrp ` N ) gsum U ) -> Q = ( ( SymGrp ` N ) gsum U ) ) | 
						
							| 45 | 4 | eqcomi |  |-  ( SymGrp ` N ) = Z | 
						
							| 46 | 45 | oveq1i |  |-  ( ( SymGrp ` N ) gsum U ) = ( Z gsum U ) | 
						
							| 47 | 44 46 | eqtrdi |  |-  ( Q = ( ( SymGrp ` N ) gsum U ) -> Q = ( Z gsum U ) ) | 
						
							| 48 | 47 | adantl |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> Q = ( Z gsum U ) ) | 
						
							| 49 | 43 48 | eqtrd |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( Z gsum r ) = ( Z gsum U ) ) | 
						
							| 50 | 4 5 28 29 31 49 | psgnuni |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` U ) ) ) | 
						
							| 51 | 26 50 | eqtrd |  |-  ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) | 
						
							| 52 | 51 | ex |  |-  ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) | 
						
							| 53 | 52 | ex |  |-  ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) -> ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) ) | 
						
							| 54 | 53 | rexlimiva |  |-  ( E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) -> ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) ) | 
						
							| 55 | 23 54 | mpcom |  |-  ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) | 
						
							| 56 | 55 | ex |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) ) |