| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgndif.p |  |-  P = ( Base ` ( SymGrp ` N ) ) | 
						
							| 2 |  | psgndif.s |  |-  S = ( pmSgn ` N ) | 
						
							| 3 |  | psgndif.z |  |-  Z = ( pmSgn ` ( N \ { K } ) ) | 
						
							| 4 |  | eqid |  |-  ran ( pmTrsp ` ( N \ { K } ) ) = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 5 |  | eqid |  |-  ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) | 
						
							| 6 |  | eqid |  |-  ( SymGrp ` N ) = ( SymGrp ` N ) | 
						
							| 7 |  | eqid |  |-  ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) | 
						
							| 8 | 1 4 5 6 7 | psgnfix2 |  |-  ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. r e. Word ran ( pmTrsp ` N ) Q = ( ( SymGrp ` N ) gsum r ) ) ) | 
						
							| 9 | 8 | imp |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. r e. Word ran ( pmTrsp ` N ) Q = ( ( SymGrp ` N ) gsum r ) ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) -> E. r e. Word ran ( pmTrsp ` N ) Q = ( ( SymGrp ` N ) gsum r ) ) | 
						
							| 11 | 1 4 5 6 7 | psgndiflemA |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( w e. Word ran ( pmTrsp ` ( N \ { K } ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( w e. Word ran ( pmTrsp ` ( N \ { K } ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ r e. Word ran ( pmTrsp ` N ) ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) | 
						
							| 13 | 12 | 3anassrs |  |-  ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) | 
						
							| 14 | 13 | adantlrr |  |-  ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) | 
						
							| 15 |  | eqeq1 |  |-  ( s = ( -u 1 ^ ( # ` w ) ) -> ( s = ( -u 1 ^ ( # ` r ) ) <-> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) | 
						
							| 16 | 15 | ad2antll |  |-  ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) -> ( s = ( -u 1 ^ ( # ` r ) ) <-> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( s = ( -u 1 ^ ( # ` r ) ) <-> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) | 
						
							| 18 | 14 17 | sylibrd |  |-  ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> s = ( -u 1 ^ ( # ` r ) ) ) ) | 
						
							| 19 | 18 | ralrimiva |  |-  ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) -> A. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) -> s = ( -u 1 ^ ( # ` r ) ) ) ) | 
						
							| 20 | 10 19 | r19.29imd |  |-  ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) -> E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) | 
						
							| 21 | 20 | rexlimdva2 |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) -> E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) | 
						
							| 22 | 1 4 5 | psgnfix1 |  |-  ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) | 
						
							| 24 | 23 | ad2antrr |  |-  ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) | 
						
							| 25 |  | simp-4l |  |-  ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) ) | 
						
							| 26 |  | simpr |  |-  ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) | 
						
							| 28 |  | simpr |  |-  ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) | 
						
							| 29 |  | simp-4r |  |-  ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> r e. Word ran ( pmTrsp ` N ) ) | 
						
							| 30 | 27 28 29 | 3jca |  |-  ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( w e. Word ran ( pmTrsp ` ( N \ { K } ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ r e. Word ran ( pmTrsp ` N ) ) ) | 
						
							| 31 |  | simpr |  |-  ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) -> Q = ( ( SymGrp ` N ) gsum r ) ) | 
						
							| 32 | 31 | ad2antrr |  |-  ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> Q = ( ( SymGrp ` N ) gsum r ) ) | 
						
							| 33 | 25 30 32 11 | syl3c |  |-  ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) | 
						
							| 34 | 33 | eqcomd |  |-  ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) | 
						
							| 35 | 34 | ex |  |-  ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) -> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 36 | 35 | adantlrr |  |-  ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) -> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 37 |  | eqeq1 |  |-  ( s = ( -u 1 ^ ( # ` r ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 38 | 37 | ad2antll |  |-  ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 40 | 36 39 | sylibrd |  |-  ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) -> s = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 41 | 40 | ralrimiva |  |-  ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) -> A. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) -> s = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 42 | 24 41 | r19.29imd |  |-  ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 43 | 42 | rexlimdva2 |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 44 | 21 43 | impbid |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) | 
						
							| 45 | 44 | iotabidv |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( iota s E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) = ( iota s E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) | 
						
							| 46 |  | diffi |  |-  ( N e. Fin -> ( N \ { K } ) e. Fin ) | 
						
							| 47 | 46 | ad2antrr |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( N \ { K } ) e. Fin ) | 
						
							| 48 |  | eqid |  |-  { q e. P | ( q ` K ) = K } = { q e. P | ( q ` K ) = K } | 
						
							| 49 |  | eqid |  |-  ( Base ` ( SymGrp ` ( N \ { K } ) ) ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | 
						
							| 50 |  | eqid |  |-  ( N \ { K } ) = ( N \ { K } ) | 
						
							| 51 | 1 48 49 50 | symgfixelsi |  |-  ( ( K e. N /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) | 
						
							| 52 | 51 | adantll |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) | 
						
							| 53 | 5 49 4 3 | psgnvalfi |  |-  ( ( ( N \ { K } ) e. Fin /\ ( Q |` ( N \ { K } ) ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( iota s E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 54 | 47 52 53 | syl2anc |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( iota s E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 55 |  | simpl |  |-  ( ( N e. Fin /\ K e. N ) -> N e. Fin ) | 
						
							| 56 |  | elrabi |  |-  ( Q e. { q e. P | ( q ` K ) = K } -> Q e. P ) | 
						
							| 57 | 6 1 7 2 | psgnvalfi |  |-  ( ( N e. Fin /\ Q e. P ) -> ( S ` Q ) = ( iota s E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) | 
						
							| 58 | 55 56 57 | syl2an |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( S ` Q ) = ( iota s E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) | 
						
							| 59 | 45 54 58 | 3eqtr4d |  |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( S ` Q ) ) | 
						
							| 60 | 59 | ex |  |-  ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( S ` Q ) ) ) |